Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adaptive spatial-layout selection for massive multi-color visible light communications

Not Accessible

Your library or personal account may give you access

Abstract

Massive multi-color visible light communications (mMC-VLC) sufficiently utilizing space and color domain resources is proposed to satisfy high-spectral-efficiency, high-speed, and high-density-coverage requirements of next-generation indoor data connections. However, the gap between the number of LEDs and photodiodes (PDs) and the high correlation among different channels limit the multiplexing of mMC-VLC. Also, the mobility of the receiver is the bottleneck of mMC-VLC. So, adaptive spatial-layout selection (ASLS) is proposed to settle the above problems, which selects $ N $ sets $ n $-color LEDs from the transmitter to form an approximate optimal closed-circle layout adapting to the receiver position. First, the optimal parameter problems to minimize the ill condition of the activated system under layout constraints of the closed circle and linear types are formulated for a fixed receiver position. Second, to achieve adaptivity, the fitting curves of the optimal layout parameter and $ {D_v} $ under both constraints are researched; $ {D_v} $ is the vertical distance between the transmitter and receiver planes. Finally, the closest layout-selected principle (CLSP) is proposed to solve the problem of the LEDs perhaps not perfectly forming the optimal parameter layout for mMC-VLC. The bit-error ratio (BER) performances and application scopes of ASLS under both layout constraints are compared to determine that the constraint layout is a closed circle; meanwhile the available maximal $ N $ corresponding to the receiver position is obtained. The optimal parameter of ASLS is linearly related to the receiver position and not related to $ N $. The ASLS always achieves better BER performance than optical multi-stream spatial modulation.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Robust layout optimization for intelligent reflecting surfaces-based visible light communication systems

Changling Liu, Jianping Wang, Lifang Feng, Hongyao Chen, and Zhuo Xue
Appl. Opt. 63(8) 2020-2029 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.