Abstract

In this paper, we aim to provide a solution for choosing an optimized digitization frequency for full-waveform reconstruction of narrow FWHM laser pulses to improve the performance accuracy required for recognition and characterization of a wide range of materials with distinctive reflectance features. This type of analysis, for the first time, to the best of our knowledge, gives an assessment of the absolute accuracy with which waveform peak intensity and spatiotemporal peak location can be detected using multi- or hyperspectral lidar instrumentation. Different full-waveform reconstruction algorithms with varying characteristics are implemented on simulated Gaussian laser pulse data sets obtained with varying sampling frequencies ranging between 1 GHz and 5 GHz. The data sets are analyzed, and an optimized digitization frequency is found based on observation of algorithmic parameter retrieval accuracy. The accuracy of the full-waveform retrieval in relation to the type of algorithm used and its robustness related to the digitization frequency are also discussed. We find that optimizing the algorithmic processing of multi-wavelength sampled radiance data recorded by multispectral and hyperspectral lidar instruments significantly improves the accuracy of reflectance retrieval and target material characterization capabilities of the instrument.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Portable hyperspectral lidar utilizing 5 GHz multichannel full waveform digitization

Tuomo Malkamäki, Sanna Kaasalainen, and Julian Ilinca
Opt. Express 27(8) A468-A480 (2019)

Full waveform hyperspectral LiDAR for terrestrial laser scanning

Teemu Hakala, Juha Suomalainen, Sanna Kaasalainen, and Yuwei Chen
Opt. Express 20(7) 7119-7127 (2012)

Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data

Eduard Chemyakin, Detlef Müller, Sharon Burton, Alexei Kolgotin, Chris Hostetler, and Richard Ferrare
Appl. Opt. 53(31) 7252-7266 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
    [Crossref]
  2. S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
    [Crossref]
  3. L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
    [Crossref]
  4. W. Wagner, A. Ulrich, V. Ducic, T. Maelzer, and N. Srudnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2011).
    [Crossref]
  5. Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
    [Crossref]
  6. T. Hakala, J. Suomalainen, S. Kaasalinen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
    [Crossref]
  7. W. Wagner, “Radiometric calibration of small footprint full waveform airborne laser scanner measurements: basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65, 505–513 (2010).
    [Crossref]
  8. K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
    [Crossref]
  9. A. Ullrich and M. Phennigbauer, “Echo digitization and waveform analysis in airborne and terrestrial laser scanning,” 2011, https://www.ifp.uni-stuttgart.de/publications/phowo11/220Ullrich.pdf .
  10. T. Malkamäki, S. Kaasalainen, and J. Ilinca, “Portable hyperspectral lidar utilizing 5ghz multichannel full waveform digitization,” Opt. Express 27, A468–A480 (2019).
    [Crossref]
  11. R. Gaulton, F. Danson, G. Pearson, P. Lewis, and M. Disney, “The Salford advanced laser canopy analyser (salca): a multispectral full waveform lidar for improved vegetation characterization,” in Proceedings of the Remote Sensing and Photogrammetry Society Conference, Remote Sensing and the Carbon Cycle, London, UK, 2010, Vol. 5.
  12. M. Hofton, J. Minster, and J. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Remote Sens. 38, 1989–1996 (2000).
    [Crossref]
  13. A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualization and analysis of full-waveform airborne lidar scanner data,” Int. Archives Photogramm. Remote Sens. 59, (Part3/W19), 103–108 (2005).
    [Crossref]
  14. B. Jutzi, B. Berle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256–267 (2003).
    [Crossref]
  15. X. Shen, Q. Li, G. Wu, and J. Zhu, “Decomposition of lidar waveforms by b-spline based modeling,” ISPRS J. Photogramm. Remote Sens. 128, 182–191 (2017).
    [Crossref]
  16. A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
    [Crossref]
  17. A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
    [Crossref]
  18. A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
    [Crossref]

2019 (1)

2017 (2)

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

X. Shen, Q. Li, G. Wu, and J. Zhu, “Decomposition of lidar waveforms by b-spline based modeling,” ISPRS J. Photogramm. Remote Sens. 128, 182–191 (2017).
[Crossref]

2016 (1)

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

2015 (1)

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

2013 (1)

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

2012 (1)

2011 (1)

W. Wagner, A. Ulrich, V. Ducic, T. Maelzer, and N. Srudnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2011).
[Crossref]

2010 (2)

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

W. Wagner, “Radiometric calibration of small footprint full waveform airborne laser scanner measurements: basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65, 505–513 (2010).
[Crossref]

2009 (1)

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

2008 (1)

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

2005 (1)

A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualization and analysis of full-waveform airborne lidar scanner data,” Int. Archives Photogramm. Remote Sens. 59, (Part3/W19), 103–108 (2005).
[Crossref]

2003 (1)

B. Jutzi, B. Berle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256–267 (2003).
[Crossref]

2001 (1)

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

2000 (1)

M. Hofton, J. Minster, and J. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Remote Sens. 38, 1989–1996 (2000).
[Crossref]

Ahlberg, S.

A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualization and analysis of full-waveform airborne lidar scanner data,” Int. Archives Photogramm. Remote Sens. 59, (Part3/W19), 103–108 (2005).
[Crossref]

Ahokas, E.

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

Allouis, T.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

Armston, J.

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

Baldridge, A.

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Berle, B.

B. Jutzi, B. Berle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256–267 (2003).
[Crossref]

Bishop, J.

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Blair, J.

M. Hofton, J. Minster, and J. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Remote Sens. 38, 1989–1996 (2000).
[Crossref]

Brede, B.

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

Bretar, F.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

Bridges, N.

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Brown, A.

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Burt, A.

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

Byrne, S.

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

Calders, K.

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

Chakrabati, S.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Chauve, A.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

Chen, Y.

Cok, T. A.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Colaprete, A.

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

Crowley, J.

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Danson, F.

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

R. Gaulton, F. Danson, G. Pearson, P. Lewis, and M. Disney, “The Salford advanced laser canopy analyser (salca): a multispectral full waveform lidar for improved vegetation characterization,” in Proceedings of the Remote Sensing and Photogrammetry Society Conference, Remote Sensing and the Carbon Cycle, London, UK, 2010, Vol. 5.

de Souza Filho, C.

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Desseiligny, M. P.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

Disney, M.

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

R. Gaulton, F. Danson, G. Pearson, P. Lewis, and M. Disney, “The Salford advanced laser canopy analyser (salca): a multispectral full waveform lidar for improved vegetation characterization,” in Proceedings of the Remote Sensing and Photogrammetry Society Conference, Remote Sensing and the Carbon Cycle, London, UK, 2010, Vol. 5.

Douglas, E.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Du, L.

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

Ducic, V.

W. Wagner, A. Ulrich, V. Ducic, T. Maelzer, and N. Srudnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2011).
[Crossref]

Durrieu, S.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

Gaulton, R.

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

R. Gaulton, F. Danson, G. Pearson, P. Lewis, and M. Disney, “The Salford advanced laser canopy analyser (salca): a multispectral full waveform lidar for improved vegetation characterization,” in Proceedings of the Remote Sensing and Photogrammetry Society Conference, Remote Sensing and the Carbon Cycle, London, UK, 2010, Vol. 5.

Gong, W.

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

Gunawan, O.

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

Hakala, T.

Hewawasam, K.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Hofton, M.

M. Hofton, J. Minster, and J. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Remote Sens. 38, 1989–1996 (2000).
[Crossref]

Hook, S.

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Howe, G.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Hyyppa, J.

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

Ilinca, J.

Jupp, D.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Jutzi, B.

B. Jutzi, B. Berle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256–267 (2003).
[Crossref]

Kaartinen, H.

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

Kaasalainen, S.

T. Malkamäki, S. Kaasalainen, and J. Ilinca, “Portable hyperspectral lidar utilizing 5ghz multichannel full waveform digitization,” Opt. Express 27, A468–A480 (2019).
[Crossref]

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

Kaasalinen, S.

Kukko, A.

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

Lewis, P.

R. Gaulton, F. Danson, G. Pearson, P. Lewis, and M. Disney, “The Salford advanced laser canopy analyser (salca): a multispectral full waveform lidar for improved vegetation characterization,” in Proceedings of the Remote Sensing and Photogrammetry Society Conference, Remote Sensing and the Carbon Cycle, London, UK, 2010, Vol. 5.

Li, Q.

X. Shen, Q. Li, G. Wu, and J. Zhu, “Decomposition of lidar waveforms by b-spline based modeling,” ISPRS J. Photogramm. Remote Sens. 128, 182–191 (2017).
[Crossref]

Li, Z.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Lindroos, T.

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

Litkey, P.

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

Maelzer, T.

W. Wagner, A. Ulrich, V. Ducic, T. Maelzer, and N. Srudnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2011).
[Crossref]

Malkamäki, T.

Marion, G.

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Michael, T.

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

Minster, J.

M. Hofton, J. Minster, and J. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Remote Sens. 38, 1989–1996 (2000).
[Crossref]

Muir, J.

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

Nightingale, J.

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

Origo, N.

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

Paynter, I.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Pearson, G.

R. Gaulton, F. Danson, G. Pearson, P. Lewis, and M. Disney, “The Salford advanced laser canopy analyser (salca): a multispectral full waveform lidar for improved vegetation characterization,” in Proceedings of the Remote Sensing and Photogrammetry Society Conference, Remote Sensing and the Carbon Cycle, London, UK, 2010, Vol. 5.

Persson, A.

A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualization and analysis of full-waveform airborne lidar scanner data,” Int. Archives Photogramm. Remote Sens. 59, (Part3/W19), 103–108 (2005).
[Crossref]

Puech, W.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

Ramirez, F.

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

Sanez, E.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Schaefer, M.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Shaaf, C.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Shen, X.

X. Shen, Q. Li, G. Wu, and J. Zhu, “Decomposition of lidar waveforms by b-spline based modeling,” ISPRS J. Photogramm. Remote Sens. 128, 182–191 (2017).
[Crossref]

Shi, S.

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

Soderman, U.

A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualization and analysis of full-waveform airborne lidar scanner data,” Int. Archives Photogramm. Remote Sens. 59, (Part3/W19), 103–108 (2005).
[Crossref]

Song, S.

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

Srudnicka, N.

W. Wagner, A. Ulrich, V. Ducic, T. Maelzer, and N. Srudnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2011).
[Crossref]

Stilla, U.

B. Jutzi, B. Berle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256–267 (2003).
[Crossref]

Strahler, A.

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

Sun, J.

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

Sun, W.

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

Suomalainen, J.

Thomson, B.

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

Titus, T.

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

Topel, J.

A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualization and analysis of full-waveform airborne lidar scanner data,” Int. Archives Photogramm. Remote Sens. 59, (Part3/W19), 103–108 (2005).
[Crossref]

Ulrich, A.

W. Wagner, A. Ulrich, V. Ducic, T. Maelzer, and N. Srudnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2011).
[Crossref]

Vega, C.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

Videen, G.

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

Wagner, W.

W. Wagner, A. Ulrich, V. Ducic, T. Maelzer, and N. Srudnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2011).
[Crossref]

W. Wagner, “Radiometric calibration of small footprint full waveform airborne laser scanner measurements: basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65, 505–513 (2010).
[Crossref]

Wolff, M.

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

Wu, G.

X. Shen, Q. Li, G. Wu, and J. Zhu, “Decomposition of lidar waveforms by b-spline based modeling,” ISPRS J. Photogramm. Remote Sens. 128, 182–191 (2017).
[Crossref]

Yanf, J.

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

Zhu, B.

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

Zhu, J.

X. Shen, Q. Li, G. Wu, and J. Zhu, “Decomposition of lidar waveforms by b-spline based modeling,” ISPRS J. Photogramm. Remote Sens. 128, 182–191 (2017).
[Crossref]

Earth Planet. Sci. Lett. (1)

A. Brown, S. Hook, A. Baldridge, J. Crowley, N. Bridges, B. Thomson, G. Marion, C. de Souza Filho, and J. Bishop, “Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of mars,” Earth Planet. Sci. Lett. 297, 174–182 (2010).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

Z. Li, D. Jupp, A. Strahler, C. Shaaf, G. Howe, K. Hewawasam, E. Douglas, S. Chakrabati, T. A. Cok, I. Paynter, E. Sanez, and M. Schaefer, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2001).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (3)

S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528–534 (2008).
[Crossref]

K. Calders, M. Disney, J. Armston, A. Burt, B. Brede, N. Origo, J. Muir, and J. Nightingale, “Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability,” IEEE Trans. Geosci. Remote Sens. 55, 2716–2724 (2017).
[Crossref]

M. Hofton, J. Minster, and J. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Remote Sens. 38, 1989–1996 (2000).
[Crossref]

Int. Archives Photogramm. Remote Sens. (1)

A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualization and analysis of full-waveform airborne lidar scanner data,” Int. Archives Photogramm. Remote Sens. 59, (Part3/W19), 103–108 (2005).
[Crossref]

Int. J. Appl. Earth Observ. Geoinf. (1)

L. Du, W. Gong, S. Shi, J. Yanf, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Observ. Geoinf. 44, 136–143 (2016).
[Crossref]

Int. J. Remote Sens. (1)

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Desseiligny, and W. Puech, “Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in alpine coniferous forest,” Int. J. Remote Sens. 30, 5211–5228 (2009).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (3)

X. Shen, Q. Li, G. Wu, and J. Zhu, “Decomposition of lidar waveforms by b-spline based modeling,” ISPRS J. Photogramm. Remote Sens. 128, 182–191 (2017).
[Crossref]

W. Wagner, A. Ulrich, V. Ducic, T. Maelzer, and N. Srudnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2011).
[Crossref]

W. Wagner, “Radiometric calibration of small footprint full waveform airborne laser scanner measurements: basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65, 505–513 (2010).
[Crossref]

J. Quantum Spectrosc. Radiat. Transfer (1)

A. Brown, T. Michael, S. Byrne, W. Sun, T. Titus, A. Colaprete, M. Wolff, and G. Videen, “The science case for a modern, multi-wavelength, polarization-sensitive lidar in orbit around mars,” J. Quantum Spectrosc. Radiat. Transfer 153, 131–143 (2015).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

B. Jutzi, B. Berle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256–267 (2003).
[Crossref]

Remote Sens. Environ. (1)

R. Gaulton, F. Danson, F. Ramirez, and O. Gunawan, “The potential of dual wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

Other (2)

A. Ullrich and M. Phennigbauer, “Echo digitization and waveform analysis in airborne and terrestrial laser scanning,” 2011, https://www.ifp.uni-stuttgart.de/publications/phowo11/220Ullrich.pdf .

R. Gaulton, F. Danson, G. Pearson, P. Lewis, and M. Disney, “The Salford advanced laser canopy analyser (salca): a multispectral full waveform lidar for improved vegetation characterization,” in Proceedings of the Remote Sensing and Photogrammetry Society Conference, Remote Sensing and the Carbon Cycle, London, UK, 2010, Vol. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Narrow broadband laser pulse propagates through the PFC to a rotatable mirror configuration, from which it is directed toward the target. The backscatter radiance is focused using a concave mirror and directed to the spectrograph input. The spectrograph separates the broadband pulse into wavelength components, which are directed to the APDs through optical fibers. The response of each detector is sampled using high-speed digitizers and passed on to an onboard computer (OBC).
Fig. 2.
Fig. 2. Three main stages of the script are described by (a) generation of a Gaussian waveform, (b) sampling of the generated waveform using different kernels to create sampled waveforms, and (c) fitting of the sampled waveforms to produce the final fitted waveforms. The parameters of interest used for assessing the accuracy of the fit are shown in (c), where $ {a_m} $ is the maximum amplitude of the fitted pulse, and $ {t_a} $ is the spatiotemporal peak location.
Fig. 3.
Fig. 3. (a) Three different point groups (PG) composed of sampled data points. The green data point is included in each point group. (b) Noise distribution measured from channel 1 with mean of $ -1.3\,\, {\rm mV}$ and standard deviation 2.03 mV.
Fig. 4.
Fig. 4. Field measurements being conducted at the Qvidja farm in southwestern Finland. The crop growth is at an early stage allowing measurements of multi-peak waveforms.
Fig. 5.
Fig. 5. (a) Peak amplitude mean errors and their maximum deviation indicated by the error bars. The symbol SW references the sampled waveform. (b) All the algorithms provide a mean error of less than 0.5% at digitization frequencies $ {f_s} \ge 3\,\,{\rm GHz} $.
Fig. 6.
Fig. 6. (a) Fits separately produced for each set of data points obtained using sampling frequencies $ {f_s} $ from 1 GHz to 5 GHz using the CS algorithm. (b) Enlarged version of the pulses peak region depicted in (a) to further illustrate the scale of fitting accuracy difference between different sampling frequencies.
Fig. 7.
Fig. 7. Peak position mean errors and their maximum deviation indicated by the error bars. The symbol SW references the sampled waveform.
Fig. 8.
Fig. 8. Raw full waveform intensity from measurement channels 1–4. Discernible differences between waveforms from different channels can be seen in both amplitude and the full-width at half maximum.
Fig. 9.
Fig. 9. (a) Sampled points extracted from the first channel full waveform at a 5 GHz digitization frequency and the fits produced by each algorithm. Only the relevant points (extracted by finding the local minima and maxima in the waveform) are used to produce each fit. If data points from oscillations (produced by the jitter of the APD sensors) occurring after the primary peak (see Fig. 8) would be included in the fitting data the performance of the algorithms would degrade. (b) Peak of the same fit as depicted in (a) to illustrate the difference in the accuracy of acquisition of the peak value between the different algorithms.

Tables (8)

Tables Icon

Table 1. Mean Errors and Standard Deviations of the Peak Amplitude Parameter Computed from the Fitted Waveforms

Tables Icon

Table 2. Peak Amplitude Mean Errors of the Gaussian Parameterization Method

Tables Icon

Table 3. Mean Error and Standard Deviation for the Spatiotemporal Peak Position

Tables Icon

Table 4. Gaussian Parameterization Peak Position Mean Errors and Standard Deviationa

Tables Icon

Table 5. Full-Waveform Fitting Accuracy: Percentage Mean Error and Standard Deviation for the Amplitude Difference Between Measured and Corresponding Fitted Data Points

Tables Icon

Table 6. Percentage Mean Error ($ {m_{\rm error}} $), Standard Deviation ($ {\sigma ^2} $), and Relative Standard Deviation (RSTD) of Single-Channel Full-Waveform Fitting Accuracy

Tables Icon

Table 7. Percentage Mean Error ($ {m_{\rm error}} $) and Standard Deviation ($ {\sigma ^2} $) Between Measured Peak Amplitude Value and Fitted Value

Tables Icon

Table 8. Mean Elapsed Time for Algorithms to Retrieve the Parameters of Interest at Different Sampling Frequenciesa