Abstract

Coherence scanning interferometry is an established optical method that is able to measure the shape of objects with high precision. The surface of the object to be measured can be both optically smooth and optically rough. However, a major limitation of coherence scanning interferometry is that the object to be measured must mechanically move relative to the measuring device during the measurement procedure. We introduce an optical measurement method based on coherence scanning interferometry that is able to measure without the mechanical movement between the measured object and the measuring device. The suggested solution is that the reference plane moves. The imaging system includes an electrically focus-tunable lens. This lens ensures that the measured part of the object is sharply imaged during the measurement procedure.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tilt metrology on rough dielectric surfaces using low coherence scanning interferometry

Chang-Yun Lee, Joonho You, and Yunseok Kim
Opt. Express 27(24) 35981-35992 (2019)

Coherence scanning interferometry: linear theory of surface measurement

Jeremy Coupland, Rahul Mandal, Kanik Palodhi, and Richard Leach
Appl. Opt. 52(16) 3662-3670 (2013)

Coherence scanning interferometry: measurement and correction of three-dimensional transfer and point-spread characteristics

Rahul Mandal, Jeremy Coupland, Richard Leach, and Daniel Mansfield
Appl. Opt. 53(8) 1554-1563 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. de Groot, “Coherence scanning interferometry,” in Optical Measurement of Surface Topography, R. Leach, ed. (Springer Verlag, 2011).
  2. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surface by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [Crossref]
  3. P. J. Caber, “Interferometric profiler for rough surface,” Appl. Opt. 32, 3438–3441 (1993).
    [Crossref]
  4. G. Häusler and S. Ettl, “Limitation of 3D sensors,” in Optical Measurement of Surface Topography, R. Leach, ed. (Springer Verlag, 2011).
  5. G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [Crossref]
  6. P. de Groot, X. C. de Lega, and S. Balasubramaniam, “Interferometric optical systems having simultaneously scanned optical path length and focus,” U.S. patent7012700 (14March2006).
  7. P. Pavliček and E. Mikeska, “White-light interferometer without mechanical scanning,” Opt. Lasers Eng. 124, 105800 (2020).
    [Crossref]
  8. R. Onodera, H. Watanabe, and Y. Ishii, “Interferometric phase-measurement using a one-dimensional discrete Hilbert transform,” Opt. Rev. 12, 29–36 (2005).
    [Crossref]

2020 (1)

P. Pavliček and E. Mikeska, “White-light interferometer without mechanical scanning,” Opt. Lasers Eng. 124, 105800 (2020).
[Crossref]

2005 (1)

R. Onodera, H. Watanabe, and Y. Ishii, “Interferometric phase-measurement using a one-dimensional discrete Hilbert transform,” Opt. Rev. 12, 29–36 (2005).
[Crossref]

1998 (1)

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[Crossref]

1993 (1)

1992 (1)

Balasubramaniam, S.

P. de Groot, X. C. de Lega, and S. Balasubramaniam, “Interferometric optical systems having simultaneously scanned optical path length and focus,” U.S. patent7012700 (14March2006).

Caber, P. J.

de Groot, P.

P. de Groot, “Coherence scanning interferometry,” in Optical Measurement of Surface Topography, R. Leach, ed. (Springer Verlag, 2011).

P. de Groot, X. C. de Lega, and S. Balasubramaniam, “Interferometric optical systems having simultaneously scanned optical path length and focus,” U.S. patent7012700 (14March2006).

de Lega, X. C.

P. de Groot, X. C. de Lega, and S. Balasubramaniam, “Interferometric optical systems having simultaneously scanned optical path length and focus,” U.S. patent7012700 (14March2006).

Dresel, T.

Ettl, S.

G. Häusler and S. Ettl, “Limitation of 3D sensors,” in Optical Measurement of Surface Topography, R. Leach, ed. (Springer Verlag, 2011).

Häusler, G.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[Crossref]

T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surface by coherence radar,” Appl. Opt. 31, 919–925 (1992).
[Crossref]

G. Häusler and S. Ettl, “Limitation of 3D sensors,” in Optical Measurement of Surface Topography, R. Leach, ed. (Springer Verlag, 2011).

Ishii, Y.

R. Onodera, H. Watanabe, and Y. Ishii, “Interferometric phase-measurement using a one-dimensional discrete Hilbert transform,” Opt. Rev. 12, 29–36 (2005).
[Crossref]

Lindner, M. W.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[Crossref]

Mikeska, E.

P. Pavliček and E. Mikeska, “White-light interferometer without mechanical scanning,” Opt. Lasers Eng. 124, 105800 (2020).
[Crossref]

Onodera, R.

R. Onodera, H. Watanabe, and Y. Ishii, “Interferometric phase-measurement using a one-dimensional discrete Hilbert transform,” Opt. Rev. 12, 29–36 (2005).
[Crossref]

Pavlicek, P.

P. Pavliček and E. Mikeska, “White-light interferometer without mechanical scanning,” Opt. Lasers Eng. 124, 105800 (2020).
[Crossref]

Venzke, H.

Watanabe, H.

R. Onodera, H. Watanabe, and Y. Ishii, “Interferometric phase-measurement using a one-dimensional discrete Hilbert transform,” Opt. Rev. 12, 29–36 (2005).
[Crossref]

Appl. Opt. (2)

J. Biomed. Opt. (1)

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[Crossref]

Opt. Lasers Eng. (1)

P. Pavliček and E. Mikeska, “White-light interferometer without mechanical scanning,” Opt. Lasers Eng. 124, 105800 (2020).
[Crossref]

Opt. Rev. (1)

R. Onodera, H. Watanabe, and Y. Ishii, “Interferometric phase-measurement using a one-dimensional discrete Hilbert transform,” Opt. Rev. 12, 29–36 (2005).
[Crossref]

Other (3)

P. de Groot, “Coherence scanning interferometry,” in Optical Measurement of Surface Topography, R. Leach, ed. (Springer Verlag, 2011).

P. de Groot, X. C. de Lega, and S. Balasubramaniam, “Interferometric optical systems having simultaneously scanned optical path length and focus,” U.S. patent7012700 (14March2006).

G. Häusler and S. Ettl, “Limitation of 3D sensors,” in Optical Measurement of Surface Topography, R. Leach, ed. (Springer Verlag, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Typical setup of CSI on rough surfaces.
Fig. 2.
Fig. 2. Schematic of the 3D sensor.
Fig. 3.
Fig. 3. Schematic of the imaging system.
Fig. 4.
Fig. 4. Alignment target imaged for $ \Delta = - 3\,\,{\rm{mm}} $ (left) and $ \Delta = 3\,\,{\rm{mm}} $ (right).
Fig. 5.
Fig. 5. Measured height profile of tilted rough surface.
Fig. 6.
Fig. 6. Height profile of milled slot. (a) 3D plot. (b) Upper part of cross section along $ y $ axis. (c) Lower part of cross section along $ y $ axis.
Fig. 7.
Fig. 7. Height profile of 1 euro cent coin. (a) 3D plot. (b) Cross section along $ x $ axis.
Fig. 8.
Fig. 8. Example of recorded interferogram. (a) Modulation interferometer with Faraday rotators. (b) Modulation interferometer without Faraday rotators.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z 1 = Δ
z 1 = f 1 2 Δ .
z 2 = f 1 2 F f 1 2 F Δ ,
z 2 = f 2 2 f 1 2 f 1 2 F Δ F .
F = f 1 2 Δ .
M = f 2 f 1 .

Metrics