Abstract

A ray-tracing model is developed based on coupled wave theory for a volume holographic grating, which is the most important element of the holographic waveguide display but not accessibly integrated in current optical design software. The model fully and faithfully represents the angular selectivity, wavelength selectivity, polarization, and other properties for the in-coupling, out-coupling, and expansion gratings. It is especially important that the model is compatible with the current optical design software. In this paper, combining with other mature optical simulation functions of Zemax, integrated models are built for typical holographic waveguide display configurations, including image source, collimation element, gratings, waveguide plates, and approximate eye. It could provide the retina image at different viewing positions, based on which the main performance characteristics of a holographic waveguide display, such as field of view, color uniformity, eye box, and light efficiency, could be easily derived. Consequently, it provides a valuable guiding approach for the design and optimization of holographic waveguide displays.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient coupling to a waveguide by combined gratings in a holographic waveguide display system

Lanlan Yang, Yan Tu, Zaiyao Shi, Jingjing Guo, Lili Wang, Yuning Zhang, Xiaohua Li, and Baoping Wang
Appl. Opt. 57(35) 10135-10145 (2018)

Integrated holographic waveguide display system with a common optical path for visible and infrared light

Zhenlv Lv, Juan Liu, Jiasheng Xiao, and Ying Kuang
Opt. Express 26(25) 32802-32811 (2018)

Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics

Zeyang Liu, Yajun Pang, Cheng Pan, and Zhanhua Huang
Opt. Express 25(24) 30720-30731 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Planar configuration for image projection,” Appl. Opt. 45, 4005–4011 (2006).
    [Crossref]
  2. Y. Amitai, I. Shariv, M. Kroch, A. A. Friesem, and S. Reinhorn, “White-light holographic display based on planar optics,” Opt. Lett. 18, 1265–1267 (1993).
    [Crossref]
  3. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34, 1352–1356 (1995).
    [Crossref]
  4. R. Shechter, N. Bokor, Y. Amitai, and A. A. Friesem, “Compact red-green-blue beam illuminator and expander,” Appl. Opt. 41, 1229–1235 (2002).
    [Crossref]
  5. Y. Amitai, A. A. Friesem, and V. Weiss, “Holographic elements with high efficiency and low aberrations for helmet displays,” Appl. Opt. 28, 3405–3416 (1989).
    [Crossref]
  6. C. Dede, “Immersive interfaces for engagement and learning,” Science 323, 66–68 (2009).
    [Crossref]
  7. J. Häkkinen, J. Takatalo, M. Pölönen, and G. Nyman, “Simulator sickness in virtual display gaming: a comparison of stereoscopic and nonstereoscopic situations,” in 8th conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’06) (2006), pp. 227–229.
  8. J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
    [Crossref]
  9. Z. Zhang, J. Liu, Q. Gao, X. Duan, and X. Shi, “A full-color compact 3D see-through near-eye display system based on complex amplitude modulation,” Opt. Express 27, 7023–7024 (2019).
    [Crossref]
  10. P. Wissmann, S. BaekOh, and G. Barbastathis, “Simulation and optimization of volume holographic imaging systems in Zemax,” Opt. Express 16, 7516–7521 (2008).
    [Crossref]
  11. Z. Liu, Y. Pang, C. Pan, and Z. Huang, “Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics,” Opt. Express 25, 30720–30731 (2017).
    [Crossref]
  12. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23, 3534–3549 (2015).
    [Crossref]
  13. M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc. Rapid Publ. 14, 15 (2018).
    [Crossref]
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  15. T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14, 467–475 (2006).
    [Crossref]
  16. L. Gu, D. Cheng, Q. Wang, and Q. Hou, “Design of a two-dimensional stray-light-free geometrical waveguide head-up display,” Appl. Opt. 57, 9246–9254 (2018).
    [Crossref]

2019 (1)

2018 (2)

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc. Rapid Publ. 14, 15 (2018).
[Crossref]

L. Gu, D. Cheng, Q. Wang, and Q. Hou, “Design of a two-dimensional stray-light-free geometrical waveguide head-up display,” Appl. Opt. 57, 9246–9254 (2018).
[Crossref]

2017 (1)

2015 (1)

2011 (1)

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
[Crossref]

2009 (1)

C. Dede, “Immersive interfaces for engagement and learning,” Science 323, 66–68 (2009).
[Crossref]

2008 (1)

2006 (2)

Y. Amitai, S. Reinhorn, and A. A. Friesem, “Planar configuration for image projection,” Appl. Opt. 45, 4005–4011 (2006).
[Crossref]

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14, 467–475 (2006).
[Crossref]

2002 (1)

1995 (1)

1993 (1)

1989 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Amitai, Y.

Anisette, M.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
[Crossref]

BaekOh, S.

Barbastathis, G.

Bokor, N.

Carmigniani, J.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
[Crossref]

Ceravolo, P.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
[Crossref]

Cheng, D.

Damien, E.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
[Crossref]

Dede, C.

C. Dede, “Immersive interfaces for engagement and learning,” Science 323, 66–68 (2009).
[Crossref]

Duan, X.

Fie, R.

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc. Rapid Publ. 14, 15 (2018).
[Crossref]

Friesem, A. A.

Furht, B.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
[Crossref]

Gao, Q.

Gu, L.

Häkkinen, J.

J. Häkkinen, J. Takatalo, M. Pölönen, and G. Nyman, “Simulator sickness in virtual display gaming: a comparison of stereoscopic and nonstereoscopic situations,” in 8th conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’06) (2006), pp. 227–229.

Han, J.

Hou, Q.

Huang, Z.

Ivkovic, M.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
[Crossref]

Kick, M.

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc. Rapid Publ. 14, 15 (2018).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Kroch, M.

Levola, T.

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14, 467–475 (2006).
[Crossref]

Liu, J.

Liu, Z.

Nyman, G.

J. Häkkinen, J. Takatalo, M. Pölönen, and G. Nyman, “Simulator sickness in virtual display gaming: a comparison of stereoscopic and nonstereoscopic situations,” in 8th conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’06) (2006), pp. 227–229.

Pan, C.

Pang, Y.

Pölönen, M.

J. Häkkinen, J. Takatalo, M. Pölönen, and G. Nyman, “Simulator sickness in virtual display gaming: a comparison of stereoscopic and nonstereoscopic situations,” in 8th conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’06) (2006), pp. 227–229.

Reinhorn, S.

Shariv, I.

Shechter, R.

Shi, X.

Stork, W.

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc. Rapid Publ. 14, 15 (2018).
[Crossref]

Takatalo, J.

J. Häkkinen, J. Takatalo, M. Pölönen, and G. Nyman, “Simulator sickness in virtual display gaming: a comparison of stereoscopic and nonstereoscopic situations,” in 8th conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’06) (2006), pp. 227–229.

Wang, Q.

Wang, Y.

Weiss, V.

Wissmann, P.

Yao, X.

Zhang, Z.

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc. Rapid Publ. 14, 15 (2018).
[Crossref]

J. Soc. Inf. Disp. (1)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14, 467–475 (2006).
[Crossref]

Multimedia Tools Appl. (1)

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Science (1)

C. Dede, “Immersive interfaces for engagement and learning,” Science 323, 66–68 (2009).
[Crossref]

Other (1)

J. Häkkinen, J. Takatalo, M. Pölönen, and G. Nyman, “Simulator sickness in virtual display gaming: a comparison of stereoscopic and nonstereoscopic situations,” in 8th conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’06) (2006), pp. 227–229.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Configuration for a holographic waveguide display system.
Fig. 2.
Fig. 2. Schematic of the implementation of VHG. ( $x$ , $y$ , $z$ ) is the coordinate position of the intersection of incident light and holographic surface. $\vec r $ and $\vec s$ are the wave vectors of two recording beams. $\overrightarrow {{\boldsymbol K}_{\rm in}} $ is the incident light.
Fig. 3.
Fig. 3. Input interface of the reflection volume holographic grating.
Fig. 4.
Fig. 4. (a) Wavelength selectivity and (b) angular selectivity characteristics of the $s$ -polarized wave and $p$ -polarized wave of the reflection VHG. The simulation parameters are $ d = { 5\;\unicode{x00B5} \rm m} $ , $\Delta n = 0.05$ , and ${\lambda _r} = 532\;{\rm nm}$ .
Fig. 5.
Fig. 5. Layout of (a) a reflective and (b) a transmission volume holographic grating and the corresponding energy ratio for zero-order and first-order diffraction.
Fig. 6.
Fig. 6. Full-color holographic waveguide display system with one-layer waveguide and RGB gratings. (a) Sketch map for the simulation configuration, (b) basic dimension illustration, (c) angle selectivity for the gratings (multi-layer gratings are applied for each channel to enlarge the field of view).
Fig. 7.
Fig. 7. Testing image used for simulation input.
Fig. 8.
Fig. 8. Simulation results of the retina image for configuration in Fig. 6: (a) with incident light at 630 nm, (b) with incident light at 532 nm, (c) with incident light at 457 nm. (d) Full-color image output with a natural wide spectrum light source.
Fig. 9.
Fig. 9. Simulation settings for 1D expansion and three-layer glass substrate. (a) Structure of 1D-exit pupil waveguide with three glass substrate. (b) Diffraction efficiency for the gratings.
Fig. 10.
Fig. 10. Simulation results of the retina image for configuration in Fig. 9: (a) with incident light at 630 nm, (b) with incident light at 532 nm, (c) with incident light at 457 nm. (d) Full-color image output with a natural wide spectrum light source.
Fig. 11.
Fig. 11. (a) Top view of the structure for a two-dimensional expansion holographic waveguide display configuration. (b) Shaded model in Zemax when $ \rho = 45^\circ $ and the thickness of the glass substrate $h = 0.8\;{\rm mm}$ .
Fig. 12.
Fig. 12. Simulation results of the retina image for configuration in Fig. 11: (a) with incident light at 630 nm, (b) with incident light at 532 nm, (c) with incident light at 457 nm. (d) Full-color image output with a natural wide spectrum light source.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

K o = K i n + G .
δ = | K o | 2 σ 2 2 | K i n + G | .
η T = sin 2 ν 2 + ξ 2 1 + ξ 2 ν 2 .
η r = s h 2 ( ν 2 ξ 2 ) 1 / 2 s h 2 ( ν 2 ξ 2 ) 1 / 2 + [ 1 ( ξ / ν ) 2 ] .
κ 1 = κ r s | r | | s | .
d p d x = M λ p λ r ( l s x l r x ) ,
d p d y = M λ p λ r ( m s y m r y ) ,
d p d z = M λ p λ r ( n s z n r z ) .
p = d p d x x + d p d y y + d p d z z ,
n 2 sin θ 2 n 1 sin θ 1 = M λ Λ ,

Metrics