Abstract

We investigated the peculiarities of the terahertz pulse time-domain holography principle in the case of raster scanning with the balance detection system. The noise in this system represents a Skellam distribution model, which differentiates it from systems based on a photoconductive antenna. We analyzed this Skellam model and provided both numerical and experimental investigations. We found that the variance of the noise in the balance detection system does not depend on the true signal. Complex-domain images obtained in this model are filtered by block-matching algorithms adapted for spatio-temporal and spatiospectral volumetric data. We presented a new cube complex-domain filter algorithm that uses block matching in all 3D data sets simultaneously in spatial and frequency coordinates. A combination of temporal and complex-domain filters allows us to expand the dynamic range of terahertz frequencies for which we can obtain amplitude/phase information. Experimental data demonstrate an improvement in the quality of the resultant images both in the time domain and complex-spectral domain. The simulation and experimental results are in good agreement.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral data denoising for terahertz pulse time-domain holography

Maksim Kulya, Nikolay V. Petrov, Anton Tsypkin, Karen Egiazarian, and Vladimir Katkovnik
Opt. Express 27(13) 18456-18476 (2019)

Time-domain terahertz compressive imaging

L. Zanotto, R. Piccoli, J. Dong, D. Caraffini, R. Morandotti, and L. Razzari
Opt. Express 28(3) 3795-3802 (2020)

Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques

Huan Wu, Liang Wang, Zhiyong Zhao, Nan Guo, Chester Shu, and Chao Lu
Opt. Express 26(5) 5126-5139 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472(2016).
    [Crossref]
  2. Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
    [Crossref]
  3. X. Wang, W. Xiong, W. Sun, and Y. Zhang, “Coaxial waveguide mode reconstruction and analysis with THz digital holography,” Opt. Express 20, 7706–7715 (2012).
    [Crossref]
  4. N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, “Nondestructive monitoring of aircraft composites using terahertz radiation,” Proc. SPIE 9448, 94482D (2015).
    [Crossref]
  5. L. Guo, X. Wang, P. Han, W. Sun, S. Feng, J. Ye, and Y. Zhang, “Observation of dehydration dynamics in biological tissues with terahertz digital holography,” Appl. Opt. 56, F173–F178 (2017).
    [Crossref]
  6. N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
    [Crossref]
  7. A. A. Ushakov, P. A. Chizhov, V. V. Bukin, S. V. Garnov, and A. B. Savel’ev, “Comparative analysis of 2d spatio-temporal visualisation techniques for the pulsed THz-radiation field using an electro-optic crystal,” Quantum Electron. 48, 487 (2018).
    [Crossref]
  8. Y. Zhao, D. T. Nguyen, Y. Hermandez, and M. P. Georges, “Focal plane detection via holographic autofocusing criterion applied on terahertz TDS system,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP) (Optical Society of America, 2018), p. JTu4A.33.
  9. V. Bespalov and A. Gorodetskii, “Modeling of referenceless holographic recording and reconstruction of images by means of pulsed terahertz radiation,” J. Opt. Technol. 74, 745–749 (2007).
    [Crossref]
  10. K. Ahi, “A method and system for enhancing the resolution of terahertz imaging,” Measurement 138, 614–619 (2019).
    [Crossref]
  11. M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
    [Crossref]
  12. O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express 9, 1198–1215(2018).
    [Crossref]
  13. O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation dynamics of the THz radiation through a dehydrated tissue by the pulse time domain holography method,” in 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.
  14. O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.
  15. M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8, 1390 (2018).
    [Crossref]
  16. M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
    [Crossref]
  17. N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
    [Crossref]
  18. J. Xu and X.-C. Zhang, “Circular involute stage,” Opt. Lett. 29, 2082–2084 (2004).
    [Crossref]
  19. G.-J. Kim, S.-G. Jeon, J.-I. Kim, and Y.-S. Jin, “Terahertz pulse detection using rotary optical delay line,” Jpn. J. Appl. Phys. 46, 7332 (2007).
    [Crossref]
  20. C. Wiegand, M. Herrmann, S. Bachtler, J. Klier, D. Molter, J. Jonuscheit, and R. Beigang, “A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras,” Opt. Express 18, 5595–5601 (2010).
    [Crossref]
  21. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204–1212 (1999).
    [Crossref]
  22. K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56, 090901 (2017).
    [Crossref]
  23. Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
    [Crossref]
  24. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
    [Crossref]
  25. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
    [Crossref]
  26. J. Van Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” J. Opt. Soc. Am. B 18, 1524–1533 (2001).
    [Crossref]
  27. M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), pp. Th4B-4.
  28. M. Kulya, N. V. Petrov, A. Tsypkin, K. Egiazarian, and V. Katkovnik, “Hyperspectral data denoising for terahertz pulse time-domain holography,” Opt. Express 27, 18456–18476 (2019).
    [Crossref]
  29. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
    [Crossref]
  30. N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2018), pp. DTu2F-7.
  31. M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Phys. Conf. Ser. 536, 012010 (2014).
  32. V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.
  33. X. C. Zhang and J. Xu, Introduction to Thz Wave Photonics (Springer, 2010).
  34. M. Tsarev, “Generation and registration of terahertz radiation by ultrashort laser pulses (in Russian),” in Tutorial. Nizhny Novgorod State University (2011), pp. 12–48.
  35. M. Abramowitz and I. A. Stegun, “Gamma function and related functions,” in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), pp. 255–294.
  36. W. Wolfe, Introduction to Imaging Spectrometers, Tutorial Text Vol (TT25 SPIEOpt. Eng., 1997).
  37. A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: a personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
    [Crossref]
  38. M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water SA 33, 145–151 (2007).
    [Crossref]
  39. Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52, 1039–1058 (2012).
    [Crossref]
  40. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
    [Crossref]
  41. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29, 1625–1630 (1990).
    [Crossref]
  42. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
    [Crossref]
  43. D. Claus, G. Pedrini, D. Buchta, and W. Osten, “Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography,” J. Opt. Soc. Am. A 35, 546–552 (2018).
    [Crossref]
  44. S. Kalenkov, G. Kalenkov, and A. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” J. Opt. Soc. Am. B 34, B49–B55 (2017).
    [Crossref]
  45. G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modified Linnik interferometer,” Laser Phys. 29, 016201 (2018).
    [Crossref]
  46. V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Signal Process. 63, 72–85 (2017).
    [Crossref]
  47. V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
    [Crossref]
  48. V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denoising based on group-wise complex-domain sparsity,” arXiv:1711.00362v1 (2017).
  49. K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 15th European Signal Processing Conference (IEEE, 2007), pp. 145–149.
  50. V. Katkovnik, I. Shevkunov, C. Claus, G. Pedrini, and K. Egiazarian, “Non-local similarity complex domain denoising for hyperspectral phase imaging,” in Proceedings of 2nd International Conference on Optics, Photonics and Lasers, OPAL’19, Amsterdam, The Netherlands (2019).
  51. L. Zhuang and J. M. Bioucas-Dias, “Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations,” IEEE J. Sel. Topics Appl. Earth Observ. 11, 730–742 (2018).
    [Crossref]
  52. J. M. Bioucas-Dias and J. M. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Remote Sens. 46, 2435–2445 (2008).
    [Crossref]
  53. K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
    [Crossref]
  54. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
    [Crossref]
  55. A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26, 26444–26461 (2018).
    [Crossref]
  56. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
    [Crossref]

2019 (5)

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

K. Ahi, “A method and system for enhancing the resolution of terahertz imaging,” Measurement 138, 614–619 (2019).
[Crossref]

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref]

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]

M. Kulya, N. V. Petrov, A. Tsypkin, K. Egiazarian, and V. Katkovnik, “Hyperspectral data denoising for terahertz pulse time-domain holography,” Opt. Express 27, 18456–18476 (2019).
[Crossref]

2018 (7)

D. Claus, G. Pedrini, D. Buchta, and W. Osten, “Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography,” J. Opt. Soc. Am. A 35, 546–552 (2018).
[Crossref]

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modified Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express 9, 1198–1215(2018).
[Crossref]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8, 1390 (2018).
[Crossref]

A. A. Ushakov, P. A. Chizhov, V. V. Bukin, S. V. Garnov, and A. B. Savel’ev, “Comparative analysis of 2d spatio-temporal visualisation techniques for the pulsed THz-radiation field using an electro-optic crystal,” Quantum Electron. 48, 487 (2018).
[Crossref]

L. Zhuang and J. M. Bioucas-Dias, “Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations,” IEEE J. Sel. Topics Appl. Earth Observ. 11, 730–742 (2018).
[Crossref]

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26, 26444–26461 (2018).
[Crossref]

2017 (6)

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

L. Guo, X. Wang, P. Han, W. Sun, S. Feng, J. Ye, and Y. Zhang, “Observation of dehydration dynamics in biological tissues with terahertz digital holography,” Appl. Opt. 56, F173–F178 (2017).
[Crossref]

V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Signal Process. 63, 72–85 (2017).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

S. Kalenkov, G. Kalenkov, and A. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” J. Opt. Soc. Am. B 34, B49–B55 (2017).
[Crossref]

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56, 090901 (2017).
[Crossref]

2016 (2)

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472(2016).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

2015 (1)

N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, “Nondestructive monitoring of aircraft composites using terahertz radiation,” Proc. SPIE 9448, 94482D (2015).
[Crossref]

2014 (3)

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Phys. Conf. Ser. 536, 012010 (2014).

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
[Crossref]

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
[Crossref]

2012 (2)

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52, 1039–1058 (2012).
[Crossref]

X. Wang, W. Xiong, W. Sun, and Y. Zhang, “Coaxial waveguide mode reconstruction and analysis with THz digital holography,” Opt. Express 20, 7706–7715 (2012).
[Crossref]

2010 (3)

C. Wiegand, M. Herrmann, S. Bachtler, J. Klier, D. Molter, J. Jonuscheit, and R. Beigang, “A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras,” Opt. Express 18, 5595–5601 (2010).
[Crossref]

K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
[Crossref]

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

2009 (1)

A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: a personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
[Crossref]

2008 (2)

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

J. M. Bioucas-Dias and J. M. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Remote Sens. 46, 2435–2445 (2008).
[Crossref]

2007 (4)

V. Bespalov and A. Gorodetskii, “Modeling of referenceless holographic recording and reconstruction of images by means of pulsed terahertz radiation,” J. Opt. Technol. 74, 745–749 (2007).
[Crossref]

G.-J. Kim, S.-G. Jeon, J.-I. Kim, and Y.-S. Jin, “Terahertz pulse detection using rotary optical delay line,” Jpn. J. Appl. Phys. 46, 7332 (2007).
[Crossref]

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water SA 33, 145–151 (2007).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref]

2004 (1)

2001 (1)

2000 (1)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

1999 (1)

1997 (1)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

1996 (1)

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

1990 (1)

Abramowitz, M.

M. Abramowitz and I. A. Stegun, “Gamma function and related functions,” in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), pp. 255–294.

Ahi, K.

K. Ahi, “A method and system for enhancing the resolution of terahertz imaging,” Measurement 138, 614–619 (2019).
[Crossref]

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56, 090901 (2017).
[Crossref]

Ahn, J.

K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
[Crossref]

Akturk, S.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Bachtler, S.

Balbekin, N.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

Balbekin, N. S.

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]

N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, “Nondestructive monitoring of aircraft composites using terahertz radiation,” Proc. SPIE 9448, 94482D (2015).
[Crossref]

Beigang, R.

Belashov, A. V.

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]

Bespalov, V.

V. Bespalov and A. Gorodetskii, “Modeling of referenceless holographic recording and reconstruction of images by means of pulsed terahertz radiation,” J. Opt. Technol. 74, 745–749 (2007).
[Crossref]

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.

Bespalov, V. G.

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8, 1390 (2018).
[Crossref]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472(2016).
[Crossref]

N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, “Nondestructive monitoring of aircraft composites using terahertz radiation,” Proc. SPIE 9448, 94482D (2015).
[Crossref]

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Phys. Conf. Ser. 536, 012010 (2014).

N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2018), pp. DTu2F-7.

Bioucas-Dias, J. M.

L. Zhuang and J. M. Bioucas-Dias, “Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations,” IEEE J. Sel. Topics Appl. Earth Observ. 11, 730–742 (2018).
[Crossref]

J. M. Bioucas-Dias and J. M. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Remote Sens. 46, 2435–2445 (2008).
[Crossref]

Borot, A.

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26, 26444–26461 (2018).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Buchta, D.

Bukin, V. V.

A. A. Ushakov, P. A. Chizhov, V. V. Bukin, S. V. Garnov, and A. B. Savel’ev, “Comparative analysis of 2d spatio-temporal visualisation techniques for the pulsed THz-radiation field using an electro-optic crystal,” Quantum Electron. 48, 487 (2018).
[Crossref]

Bulcock, H.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water SA 33, 145–151 (2007).
[Crossref]

Cassar, Q.

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

Chetty, K.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water SA 33, 145–151 (2007).
[Crossref]

Chizhov, P. A.

A. A. Ushakov, P. A. Chizhov, V. V. Bukin, S. V. Garnov, and A. B. Savel’ev, “Comparative analysis of 2d spatio-temporal visualisation techniques for the pulsed THz-radiation field using an electro-optic crystal,” Quantum Electron. 48, 487 (2018).
[Crossref]

Claus, C.

V. Katkovnik, I. Shevkunov, C. Claus, G. Pedrini, and K. Egiazarian, “Non-local similarity complex domain denoising for hyperspectral phase imaging,” in Proceedings of 2nd International Conference on Optics, Photonics and Lasers, OPAL’19, Amsterdam, The Netherlands (2019).

Claus, D.

Cui, Y.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

Dabov, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref]

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 15th European Signal Processing Conference (IEEE, 2007), pp. 145–149.

Egiazarian, K.

M. Kulya, N. V. Petrov, A. Tsypkin, K. Egiazarian, and V. Katkovnik, “Hyperspectral data denoising for terahertz pulse time-domain holography,” Opt. Express 27, 18456–18476 (2019).
[Crossref]

V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Signal Process. 63, 72–85 (2017).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref]

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), pp. Th4B-4.

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 15th European Signal Processing Conference (IEEE, 2007), pp. 145–149.

V. Katkovnik, I. Shevkunov, C. Claus, G. Pedrini, and K. Egiazarian, “Non-local similarity complex domain denoising for hyperspectral phase imaging,” in Proceedings of 2nd International Conference on Optics, Photonics and Lasers, OPAL’19, Amsterdam, The Netherlands (2019).

Egiazarian, K. O.

V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denoising based on group-wise complex-domain sparsity,” arXiv:1711.00362v1 (2017).

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
[Crossref]

Feng, S.

Feng, Y.-Z.

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52, 1039–1058 (2012).
[Crossref]

Foi, A.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref]

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 15th European Signal Processing Conference (IEEE, 2007), pp. 145–149.

Gallet, V.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

Gallot, G.

Garnov, S. V.

A. A. Ushakov, P. A. Chizhov, V. V. Bukin, S. V. Garnov, and A. B. Savel’ev, “Comparative analysis of 2d spatio-temporal visualisation techniques for the pulsed THz-radiation field using an electro-optic crystal,” Quantum Electron. 48, 487 (2018).
[Crossref]

Georges, M. P.

Y. Zhao, D. T. Nguyen, Y. Hermandez, and M. P. Georges, “Focal plane detection via holographic autofocusing criterion applied on terahertz TDS system,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP) (Optical Society of America, 2018), p. JTu4A.33.

Gobert, O.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

Goetz, A. F.

A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: a personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
[Crossref]

Gorodetskii, A.

Gorodetsky, A.

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref]

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472(2016).
[Crossref]

Goryachev, I.

Govender, M.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water SA 33, 145–151 (2007).
[Crossref]

Grachev, Y.

Grachev, Y. V.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.

Gredyuhina, I.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

Grischkowsky, D.

Gu, X.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Guillet, J.-P.

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

Guo, L.

Han, P.

Hermandez, Y.

Y. Zhao, D. T. Nguyen, Y. Hermandez, and M. P. Georges, “Focal plane detection via holographic autofocusing criterion applied on terahertz TDS system,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP) (Optical Society of America, 2018), p. JTu4A.33.

Herrmann, M.

Hewitt, T.

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

Ichioka, Y.

Inoue, T.

Itoh, K.

Jeon, S.-G.

G.-J. Kim, S.-G. Jeon, J.-I. Kim, and Y.-S. Jin, “Terahertz pulse detection using rotary optical delay line,” Jpn. J. Appl. Phys. 46, 7332 (2007).
[Crossref]

Jin, Y.-S.

G.-J. Kim, S.-G. Jeon, J.-I. Kim, and Y.-S. Jin, “Terahertz pulse detection using rotary optical delay line,” Jpn. J. Appl. Phys. 46, 7332 (2007).
[Crossref]

Johnson, J. L.

Jonuscheit, J.

Kalenkov, G.

Kalenkov, G. S.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modified Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Kalenkov, S.

Kalenkov, S. G.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modified Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Katkovnik, V.

M. Kulya, N. V. Petrov, A. Tsypkin, K. Egiazarian, and V. Katkovnik, “Hyperspectral data denoising for terahertz pulse time-domain holography,” Opt. Express 27, 18456–18476 (2019).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Signal Process. 63, 72–85 (2017).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref]

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), pp. Th4B-4.

V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denoising based on group-wise complex-domain sparsity,” arXiv:1711.00362v1 (2017).

V. Katkovnik, I. Shevkunov, C. Claus, G. Pedrini, and K. Egiazarian, “Non-local similarity complex domain denoising for hyperspectral phase imaging,” in Proceedings of 2nd International Conference on Optics, Photonics and Lasers, OPAL’19, Amsterdam, The Netherlands (2019).

Kim, G.-J.

G.-J. Kim, S.-G. Jeon, J.-I. Kim, and Y.-S. Jin, “Terahertz pulse detection using rotary optical delay line,” Jpn. J. Appl. Phys. 46, 7332 (2007).
[Crossref]

Kim, J.-I.

G.-J. Kim, S.-G. Jeon, J.-I. Kim, and Y.-S. Jin, “Terahertz pulse detection using rotary optical delay line,” Jpn. J. Appl. Phys. 46, 7332 (2007).
[Crossref]

Klier, J.

Kulya, M.

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref]

M. Kulya, N. V. Petrov, A. Tsypkin, K. Egiazarian, and V. Katkovnik, “Hyperspectral data denoising for terahertz pulse time-domain holography,” Opt. Express 27, 18456–18476 (2019).
[Crossref]

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express 9, 1198–1215(2018).
[Crossref]

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation dynamics of the THz radiation through a dehydrated tissue by the pulse time domain holography method,” in 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), pp. Th4B-4.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.

Kulya, M. S.

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8, 1390 (2018).
[Crossref]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472(2016).
[Crossref]

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Phys. Conf. Ser. 536, 012010 (2014).

N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2018), pp. DTu2F-7.

Lee, K.

K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
[Crossref]

Lepeshkin, A.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
[Crossref]

MacGrogan, G.

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

Matsuura, S.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

Meerovich, I. G.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modified Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Mittleman, D. M.

Molter, D.

Mounaix, P.

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

Naik, D. N.

Nascimento, J. M.

J. M. Bioucas-Dias and J. M. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Remote Sens. 46, 2435–2445 (2008).
[Crossref]

Nechiporenko, A.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

Nguyen, D. T.

Y. Zhao, D. T. Nguyen, Y. Hermandez, and M. P. Georges, “Focal plane detection via holographic autofocusing criterion applied on terahertz TDS system,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP) (Optical Society of America, 2018), p. JTu4A.33.

Novoselov, E. V.

N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, “Nondestructive monitoring of aircraft composites using terahertz radiation,” Proc. SPIE 9448, 94482D (2015).
[Crossref]

Odlyanitskiy, E.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express 9, 1198–1215(2018).
[Crossref]

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation dynamics of the THz radiation through a dehydrated tissue by the pulse time domain holography method,” in 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.

Osten, W.

Pariente, G.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

Pavlov, P. V.

N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, “Nondestructive monitoring of aircraft composites using terahertz radiation,” Proc. SPIE 9448, 94482D (2015).
[Crossref]

Pedrini, G.

Petrov, N.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), pp. Th4B-4.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.

Petrov, N. V.

M. Kulya, N. V. Petrov, A. Tsypkin, K. Egiazarian, and V. Katkovnik, “Hyperspectral data denoising for terahertz pulse time-domain holography,” Opt. Express 27, 18456–18476 (2019).
[Crossref]

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref]

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8, 1390 (2018).
[Crossref]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472(2016).
[Crossref]

N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, “Nondestructive monitoring of aircraft composites using terahertz radiation,” Proc. SPIE 9448, 94482D (2015).
[Crossref]

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Phys. Conf. Ser. 536, 012010 (2014).

N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2018), pp. DTu2F-7.

Piao, Z.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

Ponomarenko, M.

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denoising based on group-wise complex-domain sparsity,” arXiv:1711.00362v1 (2017).

Putilin, S.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.

Quéré, F.

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26, 26444–26461 (2018).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

Sakai, K.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

Savel’ev, A. B.

A. A. Ushakov, P. A. Chizhov, V. V. Bukin, S. V. Garnov, and A. B. Savel’ev, “Comparative analysis of 2d spatio-temporal visualisation techniques for the pulsed THz-radiation field using an electro-optic crystal,” Quantum Electron. 48, 487 (2018).
[Crossref]

Schelkanova, I.

Semenova, V.

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref]

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.

Semenova, V. A.

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8, 1390 (2018).
[Crossref]

Shevkunov, I.

V. Katkovnik, I. Shevkunov, C. Claus, G. Pedrini, and K. Egiazarian, “Non-local similarity complex domain denoising for hyperspectral phase imaging,” in Proceedings of 2nd International Conference on Optics, Photonics and Lasers, OPAL’19, Amsterdam, The Netherlands (2019).

Shtanko, A.

Shtanko, A. E.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modified Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Smolyanskaya, O.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express 9, 1198–1215(2018).
[Crossref]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation dynamics of the THz radiation through a dehydrated tissue by the pulse time domain holography method,” in 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.

Smolyanskaya, O. A.

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, “Gamma function and related functions,” in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), pp. 255–294.

Sun, D.-W.

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52, 1039–1058 (2012).
[Crossref]

Sun, W.

Takeda, M.

Tani, M.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

Tcypkin, A.

Tcypkin, A. N.

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Phys. Conf. Ser. 536, 012010 (2014).

Toropova, Y.

Trebino, R.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Tsarev, M.

M. Tsarev, “Generation and registration of terahertz radiation by ultrashort laser pulses (in Russian),” in Tutorial. Nizhny Novgorod State University (2011), pp. 12–48.

Tsypkin, A.

M. Kulya, N. V. Petrov, A. Tsypkin, K. Egiazarian, and V. Katkovnik, “Hyperspectral data denoising for terahertz pulse time-domain holography,” Opt. Express 27, 18456–18476 (2019).
[Crossref]

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.

Tsypkin, A. N.

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472(2016).
[Crossref]

Tuchin, V.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express 9, 1198–1215(2018).
[Crossref]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

Tuchin, V. V.

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

Ushakov, A. A.

A. A. Ushakov, P. A. Chizhov, V. V. Bukin, S. V. Garnov, and A. B. Savel’ev, “Comparative analysis of 2d spatio-temporal visualisation techniques for the pulsed THz-radiation field using an electro-optic crystal,” Quantum Electron. 48, 487 (2018).
[Crossref]

Uspenskaya, M.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

Van Rudd, J.

Wang, X.

Wiegand, C.

Wolfe, W.

W. Wolfe, Introduction to Imaging Spectrometers, Tutorial Text Vol (TT25 SPIEOpt. Eng., 1997).

Wu, Q.

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

Xiong, W.

Xu, J.

J. Xu and X.-C. Zhang, “Circular involute stage,” Opt. Lett. 29, 2082–2084 (2004).
[Crossref]

X. C. Zhang and J. Xu, Introduction to Thz Wave Photonics (Springer, 2010).

Ye, J.

Yoshida, T.

Zaalishvili, N. Y.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modified Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Zaytsev, K.

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation dynamics of the THz radiation through a dehydrated tissue by the pulse time domain holography method,” in 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

Zhang, X. C.

X. C. Zhang and J. Xu, Introduction to Thz Wave Photonics (Springer, 2010).

Zhang, X.-C.

J. Xu and X.-C. Zhang, “Circular involute stage,” Opt. Lett. 29, 2082–2084 (2004).
[Crossref]

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

Zhang, Y.

Zhao, Y.

Y. Zhao, D. T. Nguyen, Y. Hermandez, and M. P. Georges, “Focal plane detection via holographic autofocusing criterion applied on terahertz TDS system,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP) (Optical Society of America, 2018), p. JTu4A.33.

Zhou, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

Zhuang, L.

L. Zhuang and J. M. Bioucas-Dias, “Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations,” IEEE J. Sel. Topics Appl. Earth Observ. 11, 730–742 (2018).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
[Crossref]

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

Biomed. Opt. Express (1)

Crit. Rev. Food Sci. Nutr. (1)

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52, 1039–1058 (2012).
[Crossref]

IEEE J. Sel. Topics Appl. Earth Observ. (1)

L. Zhuang and J. M. Bioucas-Dias, “Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations,” IEEE J. Sel. Topics Appl. Earth Observ. 11, 730–742 (2018).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

J. M. Bioucas-Dias and J. M. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Remote Sens. 46, 2435–2445 (2008).
[Crossref]

IEEE Trans. Image Process. (1)

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472(2016).
[Crossref]

J. Biomed. Opt. (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
[Crossref]

J. Mod. Opt. (1)

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Opt. Technol. (1)

J. Phys. Conf. Ser. (1)

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Phys. Conf. Ser. 536, 012010 (2014).

Jpn. J. Appl. Phys. (2)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

G.-J. Kim, S.-G. Jeon, J.-I. Kim, and Y.-S. Jin, “Terahertz pulse detection using rotary optical delay line,” Jpn. J. Appl. Phys. 46, 7332 (2007).
[Crossref]

Laser Phys. (1)

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modified Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Measurement (1)

K. Ahi, “A method and system for enhancing the resolution of terahertz imaging,” Measurement 138, 614–619 (2019).
[Crossref]

Nat. Photonics (1)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

Opt. Eng. (1)

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56, 090901 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (2)

N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, “Nondestructive monitoring of aircraft composites using terahertz radiation,” Proc. SPIE 9448, 94482D (2015).
[Crossref]

N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, “Terahertz pulse time-domain holography method for phase imaging of breast tissue,” Proc. SPIE 10887, 108870G (2019).
[Crossref]

Quantum Electron. (1)

A. A. Ushakov, P. A. Chizhov, V. V. Bukin, S. V. Garnov, and A. B. Savel’ev, “Comparative analysis of 2d spatio-temporal visualisation techniques for the pulsed THz-radiation field using an electro-optic crystal,” Quantum Electron. 48, 487 (2018).
[Crossref]

Remote Sens. Environ. (1)

A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: a personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
[Crossref]

Sci. Rep. (2)

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8, 1390 (2018).
[Crossref]

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]

Signal Process. (2)

V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Signal Process. 63, 72–85 (2017).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

Strain (1)

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

Water SA (1)

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water SA 33, 145–151 (2007).
[Crossref]

Other (13)

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2.

X. C. Zhang and J. Xu, Introduction to Thz Wave Photonics (Springer, 2010).

M. Tsarev, “Generation and registration of terahertz radiation by ultrashort laser pulses (in Russian),” in Tutorial. Nizhny Novgorod State University (2011), pp. 12–48.

M. Abramowitz and I. A. Stegun, “Gamma function and related functions,” in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), pp. 255–294.

W. Wolfe, Introduction to Imaging Spectrometers, Tutorial Text Vol (TT25 SPIEOpt. Eng., 1997).

V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denoising based on group-wise complex-domain sparsity,” arXiv:1711.00362v1 (2017).

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 15th European Signal Processing Conference (IEEE, 2007), pp. 145–149.

V. Katkovnik, I. Shevkunov, C. Claus, G. Pedrini, and K. Egiazarian, “Non-local similarity complex domain denoising for hyperspectral phase imaging,” in Proceedings of 2nd International Conference on Optics, Photonics and Lasers, OPAL’19, Amsterdam, The Netherlands (2019).

Y. Zhao, D. T. Nguyen, Y. Hermandez, and M. P. Georges, “Focal plane detection via holographic autofocusing criterion applied on terahertz TDS system,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP) (Optical Society of America, 2018), p. JTu4A.33.

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation dynamics of the THz radiation through a dehydrated tissue by the pulse time domain holography method,” in 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 195, p. 10012.

N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2018), pp. DTu2F-7.

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), pp. Th4B-4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Principle scheme of pulsed THz wavefront propagation and registration by balance detection with raster scanning. This scheme is based on the concept of THz PTDH described and experimentally approved in [1].
Fig. 2.
Fig. 2. (a) normalized electrical field amplitude of the input THz pulse E / E 0 ; (b) normalized amplitude spectrum corresponding to this input pulse; (c) amplitude transmittance mask; (d) phase transmittance mask.
Fig. 3.
Fig. 3. Algorithm of data processing in the temporal and spectral domain.
Fig. 4.
Fig. 4. Experimental setup: Ti:Sa femtosecond laser system (central wavelength 790 nm, average power 2W, pulse duration 30 fs, repetition rate 1kHz); TERA-AX, pulsed THz generator based on LiNbO3; BS, beam splitter; M, mirror; IFR, infrared filter; O, object; P, scanning pinhole; HWP, half-wave plate; GP, Glan prism; PM, parabolic mirror; L, lens, QWP, quarter-wave plate; WP, Wollaston prism; LIA, lock-in amplifier. Note that we formed 1 kHz repetition rate of femtosecond (fs) pulses and the same repetition rate of the sensitivity window in LIA. Before the experiment, we used an oscillograph to combine the fs pulses and the sensitivity window in LIA. Thus, a mechanical chopper is not needed in this setup.
Fig. 5.
Fig. 5. Time-domain wavefront central cross section before and after VBM3D filtering for experimental (upper row) and simulation (lower row) results: (a), (b) noisy experimental data E ˜ ( x , y = y 0 , t , z r ) and its filtration by VBM3D; (c) noisy simulation data; (d) its filtration; (e) original simulated data without adding noise and without denoising.
Fig. 6.
Fig. 6. Time-of-flight images for experimental results: (a)–(c) noisy data E ˜ ( x , y , t = t i , z r ) ; (d), (f) data filtered by VBM3D E ^ ( x , y , t = t i , z r ) .
Fig. 7.
Fig. 7. Time-of-flight images for simulation results: (a)–(c) noisy data E ˜ ( x , y , t = t i , z r ) ; (d)–(f) data filtered by VBM3D E ^ ( x , y , t = t i , z r ) ; (g)–(i) original simulated data without adding noise and without denoising.
Fig. 8.
Fig. 8. Difference between filtered and initial data: (a) in spatio-temporal profile E diff ( x , y = y 0 , t , z r ) ; (b) in time-of-flight data E diff ( x , y , t = t i , z r ) ; (c) standard deviation in E diff ( x , y , t , z r ) calculated for each temporal slice t i .
Fig. 9.
Fig. 9. Spatiospectral distribution G ( x , y = y 0 , ν , z ) in terms of amplitude and phase for central cross section at y 0 for experimental results: (a), (b) amplitude before and after filtration; (c), (d) phase before and after filtration.
Fig. 10.
Fig. 10. Spatiospectral distribution G ( x , y = y 0 , ν , z ) in terms of amplitude and phase for central cross section at y 0 for simulation results: (a), (b) amplitude before and after filtration; (d), (e) phase before and after filtration; (c) original simulated amplitude without adding noise and without denoising; (f) original simulated phase without adding noise and without denoising.
Fig. 11.
Fig. 11. Experimental results of spatial distribution of complex spectrum G ( x , y , ν , z ) for several frequencies ν before (first and third rows) and after filtration (second and fourth rows). The two upper rows correspond to amplitude characteristics, and the two lower correspond to phase characteristics. Amplitudes are normalized to each own maximum. Phases are in the range [ π ; π ).
Fig. 12.
Fig. 12. Simulation results of spatial distribution of complex spectrum G ( x , y , ν , z ) for several frequencies ν before (first and fourth rows) and after filtration (second and fifth rows). The third and sixth rows demonstrate the original simulated amplitude and phase without adding noise and without denoising. The three upper rows correspond to amplitude characteristics, and the three lower correspond to phase characteristics. Amplitudes are normalized to each own maximum. Phases are in the range [ π ; π ).
Fig. 13.
Fig. 13. Normalized RMSE between original free-noise data and denoised data by three filtering algorithms. Each algorithm uses their best filtering parameters.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I 0 sin 2 ( ( Γ + π / 2 ) / 2 ) ,
I 1 I 0 [ sin 2 ( ( π / 2 ) / 2 ) + 2 sin ( ( π / 2 ) / 2 ) cos ( ( π / 2 ) / 2 ) / 2 Γ ] = I 0 [ 1 / 2 + Γ / 2 ] = I 0 ( 1 + Γ ) / 2 .
I 2 = I 0 sin 2 ( ( Γ π / 2 ) / 2 ) I 0 ( 1 Γ ) / 2 .
Δ I = ( I 1 I 2 ) I 0 Γ .
{ I 1 P μ 1 ; μ 1 = I 0 ( 1 + Γ ) / 2 , I 2 P μ 2 ; μ 2 = I 0 ( 1 Γ ) / 2 ,
p ( k , μ 1 , μ 2 ) = e ( μ 1 + μ 2 ) ( μ 1 / μ 2 ) k / 2 I k ( 2 μ 1 μ 2 ) e I 0 ( ( 1 + Γ ) / ( 1 Γ ) ) k / 2 I k ( I 0 ( 1 Γ 2 ) ) ,
E { k ^ } = μ 1 μ 2 = I 0 Γ , var { k ^ } = μ 1 + μ 2 = I 0 , SNR = E { k ^ } var { k ^ } = I 0 Γ .
Q T ( x , y , t , z r ) = { E ˜ ( x , y , t , z r ) , x X , y Y , 0 t T } ,
Q V ( x , y , ν , z r ) = { G ( x , y , ν , z r ) , x X , y Y , 0 ν V } ,
E ^ ( x , y , t , z r ) = VBM 3 D { Q T ( x , y , t , z r ) } .
U ^ V ¯ ( x , y ) = CCF { Z V ¯ ( x , y ) , V ¯ V } .
[ E , Z 2 , eigen , p ] = HySime ( Z ) ,
Z 2 , eigen = E H Z .
Z ^ 3 , eigen ( x , y , ν s ) = CDBM 3 D ( Z 3 , eigen ( x , y , ν s ) ) ,
Z ^ 2 = E Z ^ 2 , eigen .
G ^ ( x , y , ν , z ) = CCF { G ( x , y , ν ˜ , z ) } .

Metrics