Abstract

Interferometric measurements of rotating objects face an axial motion component if the optical axis of the measurement system is not pointing towards the axis of rotation. In a typical interferometer, axial motion of half a wavelength reduces the interference contrast to zero. Our setup compensates for this axial component by an adapted variation of the reference path length during exposure utilizing a piezoelectric actuator. We present off-center measurements on a cylinder, rotating with different angular velocities. The repeatability of these measurements is dominated by motion blur, which demonstrates that the compensation of the axial motion works accurately.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holography on moving objects: interference contrast as a function of velocity and aperture width

Annelie Schiller, Tobias Beckmann, Markus Fratz, Dominik Belzer, Alexander Bertz, Daniel Carl, and Karsten Buse
Appl. Opt. 56(16) 4622-4628 (2017)

Volumetric HiLo microscopy employing an electrically tunable lens

Katrin Philipp, André Smolarski, Nektarios Koukourakis, Andreas Fischer, Moritz Stürmer, Ulrike Wallrabe, and Jürgen W Czarske
Opt. Express 24(13) 15029-15041 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
    [Crossref]
  2. W. Osten, A. Faridian, P. Gao, K. Korner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography invited,” Appl. Opt. 53, G44–G63 (2014).
    [Crossref]
  3. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref]
  4. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
    [Crossref]
  5. M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
    [Crossref]
  6. X. Xie, L. Yang, X. Chen, N. Xu, and Y. Wang, “Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement,” Proc. SPIE 8916, 89160D (2013).
    [Crossref]
  7. M. Agour, C. Falldorf, and R. B. Bergmann, “Spatial multiplexing and autofocus in holographic contouring for inspection of micro-parts,” Opt. Express 26, 28576–28588 (2018).
    [Crossref]
  8. K. Kitagawa, “Fast surface profiling by multi-wavelength single-shot interferometry,” UOPT 4, 136–156 (2010).
    [Crossref]
  9. A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
    [Crossref]
  10. A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
    [Crossref]
  11. A. Schiller, T. Beckmann, M. Fratz, D. Belzer, A. Bertz, D. Carl, and K. Buse, “Digital holography on moving objects. Interference contrast as a function of velocity and aperture width,” Appl. Opt. 56, 4622–4628 (2017).
    [Crossref]
  12. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  13. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [Crossref]
  14. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
    [Crossref]

2019 (1)

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
[Crossref]

2018 (3)

M. Agour, C. Falldorf, and R. B. Bergmann, “Spatial multiplexing and autofocus in holographic contouring for inspection of micro-parts,” Opt. Express 26, 28576–28588 (2018).
[Crossref]

T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
[Crossref]

2017 (1)

2014 (1)

2013 (1)

X. Xie, L. Yang, X. Chen, N. Xu, and Y. Wang, “Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement,” Proc. SPIE 8916, 89160D (2013).
[Crossref]

2010 (1)

K. Kitagawa, “Fast surface profiling by multi-wavelength single-shot interferometry,” UOPT 4, 136–156 (2010).
[Crossref]

2008 (1)

2005 (1)

2000 (1)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

1982 (1)

Agour, M.

Anders, J.

M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
[Crossref]

Bayer, M.

M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
[Crossref]

Beckmann, T.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
[Crossref]

T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, D. Belzer, A. Bertz, D. Carl, and K. Buse, “Digital holography on moving objects. Interference contrast as a function of velocity and aperture width,” Appl. Opt. 56, 4622–4628 (2017).
[Crossref]

M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
[Crossref]

Belzer, D.

Bergmann, R. B.

Bertz, A.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
[Crossref]

T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, D. Belzer, A. Bertz, D. Carl, and K. Buse, “Digital holography on moving objects. Interference contrast as a function of velocity and aperture width,” Appl. Opt. 56, 4622–4628 (2017).
[Crossref]

M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
[Crossref]

Bingham, P. R.

Buse, K.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, D. Belzer, A. Bertz, D. Carl, and K. Buse, “Digital holography on moving objects. Interference contrast as a function of velocity and aperture width,” Appl. Opt. 56, 4622–4628 (2017).
[Crossref]

Carl, D.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
[Crossref]

T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, D. Belzer, A. Bertz, D. Carl, and K. Buse, “Digital holography on moving objects. Interference contrast as a function of velocity and aperture width,” Appl. Opt. 56, 4622–4628 (2017).
[Crossref]

M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
[Crossref]

Chen, X.

X. Xie, L. Yang, X. Chen, N. Xu, and Y. Wang, “Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement,” Proc. SPIE 8916, 89160D (2013).
[Crossref]

Colomb, T.

Cuche, E.

Depeursinge, C.

Emery, Y.

Falldorf, C.

Faridian, A.

Fratz, M.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
[Crossref]

T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, D. Belzer, A. Bertz, D. Carl, and K. Buse, “Digital holography on moving objects. Interference contrast as a function of velocity and aperture width,” Appl. Opt. 56, 4622–4628 (2017).
[Crossref]

M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
[Crossref]

Gao, P.

Gießler, T.

M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
[Crossref]

Ina, H.

Kitagawa, K.

K. Kitagawa, “Fast surface profiling by multi-wavelength single-shot interferometry,” UOPT 4, 136–156 (2010).
[Crossref]

Kobayashi, S.

Korner, K.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

Magistretti, P. J.

Mann, C. J.

Marquet, P.

Naik, D.

Osten, W.

W. Osten, A. Faridian, P. Gao, K. Korner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography invited,” Appl. Opt. 53, G44–G63 (2014).
[Crossref]

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Paquit, V. C.

Pedrini, G.

Rappaz, B.

Schiller, A.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
[Crossref]

T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
[Crossref]

A. Schiller, T. Beckmann, M. Fratz, D. Belzer, A. Bertz, D. Carl, and K. Buse, “Digital holography on moving objects. Interference contrast as a function of velocity and aperture width,” Appl. Opt. 56, 4622–4628 (2017).
[Crossref]

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Seyler, T.

T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
[Crossref]

Singh, A. K.

Takeda, M.

Tobin, K. W.

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Wang, Y.

X. Xie, L. Yang, X. Chen, N. Xu, and Y. Wang, “Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement,” Proc. SPIE 8916, 89160D (2013).
[Crossref]

Wilke, M.

Xie, X.

X. Xie, L. Yang, X. Chen, N. Xu, and Y. Wang, “Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement,” Proc. SPIE 8916, 89160D (2013).
[Crossref]

Xu, N.

X. Xie, L. Yang, X. Chen, N. Xu, and Y. Wang, “Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement,” Proc. SPIE 8916, 89160D (2013).
[Crossref]

Yang, L.

X. Xie, L. Yang, X. Chen, N. Xu, and Y. Wang, “Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement,” Proc. SPIE 8916, 89160D (2013).
[Crossref]

APL Photon. (1)

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Motion compensation for interferometric off-center measurements of rotating objects with varying radii,” APL Photon. 4, 071301 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Sci. (1)

T. Seyler, M. Fratz, T. Beckmann, A. Schiller, A. Bertz, and D. Carl, “Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography,” Appl. Sci. 8, 1042 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” Proc. SPIE 10834, 108342E (2018).
[Crossref]

X. Xie, L. Yang, X. Chen, N. Xu, and Y. Wang, “Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement,” Proc. SPIE 8916, 89160D (2013).
[Crossref]

UOPT (1)

K. Kitagawa, “Fast surface profiling by multi-wavelength single-shot interferometry,” UOPT 4, 136–156 (2010).
[Crossref]

Other (2)

M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, and D. Carl, “Industrial applications of digital holography,” in Digital Holography and Three-Dimensional Imaging (OSA, 2019), paper Tu4B.1.
[Crossref]

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Sketch of off-center measurement configuration. If the sensor is aligned radially (right), only transverse motion occurs. In an off-center arrangement (left), a velocity component parallel to the optical axis of the sensor occurs ( v | | ). This configuration is advantageous for gear measurement because more light is scattered back into the sensor. (b) Photograph of a gear.
Fig. 2.
Fig. 2. (a) Two-wavelength holographic setup using spatial phase shifting (not to scale, similar to the assembly presented in Ref. [10]): the piezoelectric actuator in the reference beam compensates for the velocity component v | | . For doing so, a voltage ramp is applied to the actuator as depicted on the right. (b) Photograph of the setup and the aluminum sample cylinder. (c) Interference contrast versus voltage ramp.
Fig. 3.
Fig. 3. Data processing steps: (a) the raw image is (b) Fourier transformed. The first diffraction order (red rectangle) is cropped, leading to the individual phase information for the two wavelengths. (c) The phase difference results in the phase map of the synthetic wavelength.
Fig. 4.
Fig. 4. (a) Two-wavelength ( Λ syn = 214 μm ) height measurement of the sample cylinder at 1.5°/s with compensation of an axial movement of approximately 14 λ . The deviation Δ R from the nominal shape of the cylinder is obtained; the orange rectangle indicates the measurement spot of the setup. (b) Zoom of (a). The orange lines indicate the size of one single frame. (c) Map of pixel-wise standard deviation calculated out of five measurements, with a mean standard deviation of 2.1 μm ( = Λ syn / 101 ).
Fig. 5.
Fig. 5. (a) Two-wavelength ( Λ syn = 67 μm ) height measurement of the sample cylinder at 32°/s with compensation of an axial movement of approximately 6 λ . The deviation Δ R from the nominal shape of the cylinder is obtained; the orange rectangle indicates the measurement spot of the setup. (b) zoom of (a). The orange lines indicate the size of one single frame. (c) Map of pixel-wise standard deviation calculated out of 5 measurements, with a mean standard deviation of 1.3 μm ( = Λ syn / 52 ) .
Fig. 6.
Fig. 6. Dependence of the mean repeatability σ z in fractions of the synthetic wavelength ( Λ syn ) on the circumferential speed ( v circum ) and the axial distance d ax traveled during exposure time.

Tables (1)

Tables Icon

Table 1. Settings for the Three Measurements M1-M3

Metrics