Abstract

This paper analyzes the performance of single-shot digital holographic microscopy for rapid characterization of static step-index structures in transparent polymer materials and for online monitoring of the photoinduced polymerization dynamics. The experiments are performed with a modified Mach–Zehnder transmission digital holographic microscope of high stability (phase accuracy of 0.69°) and of high magnification (of 90×). Use of near-infrared illumination allows both nondestructive examination of the manufactured samples and monitoring of optically induced processes in a photosensitive material concurrently with its excitation. The accuracy of the method for a precise sample’s topography evaluation is studied on an example of microchannel sets fabricated via two-photon polymerization and is supported by reference measurements with an atomic force microscope. The applicability of the approach for dynamic measurements is proved via online monitoring of the refractive index evolution in a photoresin layer illuminated with a focused laser beam at 405 nm. High correlation between the experimental results and a kinetics model for the photopolymerization process is achieved.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Changes in optical properties of electroporated cells as revealed by digital holographic microscopy

Violeta L. Calin, Mona Mihailescu, Nicolae Mihale, Alexandra V. Baluta, Eugenia Kovacs, Tudor Savopol, and Mihaela G. Moisescu
Biomed. Opt. Express 8(4) 2222-2234 (2017)

Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy

M. Mihailescu, R. C. Popescu, A. Matei, A. Acasandrei, I. A. Paun, and M. Dinescu
Appl. Opt. 53(22) 4850-4858 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Huebschen, I. Altpeter, R. Tschuncky, and H.-G. Herrmann, eds., Materials Characterization Using Nondestructive Evaluation (NDE) Methods (Woodhead, 2016).
  2. R. Leach, ed., Optical Measurement of Surface Topography (Springer, 2011).
  3. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography,” Appl. Opt. 53, G44–G63 (2014).
    [Crossref]
  4. T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
    [Crossref]
  5. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2006).
  6. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  7. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6, 57–119 (2014).
    [Crossref]
  8. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
    [Crossref]
  9. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref]
  10. K. Patorski and M. Trusiak, “Highly contrasted Bessel fringe minima visualization for time-averaged vibration profilometry using Hilbert transform two-frame processing,” Opt. Express 21, 16863–16881 (2013).
    [Crossref]
  11. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
    [Crossref]
  12. T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
    [Crossref]
  13. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [Crossref]
  14. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [Crossref]
  15. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046–5051 (2001).
    [Crossref]
  16. M. Mikuła, T. Kozacki, M. Józwik, and J. Kostencka, “Accurate shape measurement of focusing microstructures in Fourier digital holographic microscopy,” Appl. Opt. 57, A197–A204 (2018).
    [Crossref]
  17. V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Digital holographic microscopy for sub-μm scale high aspect ratio structures in transparent materials,” Opt. Lasers Eng. 121, 441–447 (2019).
    [Crossref]
  18. V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Performance evaluation of digital holographic microscopy for rapid inspection,” in Digital Holography and Three-Dimensional Imaging (2019), paper Th3A.10.
  19. C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science,” Appl. Opt. 53, G33–G43 (2014).
    [Crossref]
  20. V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Near real-time digital holographic imaging on conventional central processing unit,” Proc. SPIE 11056, 110562I (2019).
    [Crossref]
  21. T. Kozacki, R. Krajewski, and M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17, 13758–13767 (2009).
    [Crossref]
  22. Y.-C. Lin and C.-J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
    [Crossref]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, 1975).
  24. U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, 2nd ed. (Springer, 2015).
  25. A. Bianco, G. Coppola, M. A. Ferrara, G. Pariani, and C. Bertarelli, “Analysis of phase patterns in photochromic polyurethanes by a holographic approach,” Opt. Mater. Express 5, 2281–2291 (2015).
    [Crossref]
  26. V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
    [Crossref]
  27. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
    [Crossref]
  28. P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
    [Crossref]
  29. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).
    [Crossref]
  30. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
    [Crossref]
  31. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002).
    [Crossref]
  32. A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
    [Crossref]
  33. A. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, “Effect of a thin reflective film between substrate and photoresin on two-photon polymerization,” Addit. Manuf. 24, 658–666 (2018).
    [Crossref]
  34. G. Odian, Principles of Polymerization (Wiley, 2004).

2019 (2)

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Digital holographic microscopy for sub-μm scale high aspect ratio structures in transparent materials,” Opt. Lasers Eng. 121, 441–447 (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Near real-time digital holographic imaging on conventional central processing unit,” Proc. SPIE 11056, 110562I (2019).
[Crossref]

2018 (4)

M. Mikuła, T. Kozacki, M. Józwik, and J. Kostencka, “Accurate shape measurement of focusing microstructures in Fourier digital holographic microscopy,” Appl. Opt. 57, A197–A204 (2018).
[Crossref]

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
[Crossref]

A. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, “Effect of a thin reflective film between substrate and photoresin on two-photon polymerization,” Addit. Manuf. 24, 658–666 (2018).
[Crossref]

2015 (1)

2014 (3)

2013 (1)

2012 (1)

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

2010 (2)

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
[Crossref]

Y.-C. Lin and C.-J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
[Crossref]

2009 (1)

2008 (2)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

2007 (1)

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[Crossref]

2006 (1)

2005 (1)

2003 (1)

2002 (1)

2001 (1)

1999 (1)

1994 (2)

Abashkin, V.

Achimova, E.

Aspert, N.

Asundi, A. K.

Awatsuji, Y.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Barbastathis, G.

Bertarelli, C.

Besaga, V. R.

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Digital holographic microscopy for sub-μm scale high aspect ratio structures in transparent materials,” Opt. Lasers Eng. 121, 441–447 (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Near real-time digital holographic imaging on conventional central processing unit,” Proc. SPIE 11056, 110562I (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Performance evaluation of digital holographic microscopy for rapid inspection,” in Digital Holography and Three-Dimensional Imaging (2019), paper Th3A.10.

Bevilacqua, F.

Bhaduri, B.

Bianco, A.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, 1975).

Bourquin, S.

Burton, D. R.

Cazac, V.

Charrière, F.

Cheng, C.-J.

Y.-C. Lin and C.-J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
[Crossref]

Chichkov, B. N.

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[Crossref]

Claus, D.

Colomb, T.

Coppola, G.

Cuche, E.

Depeursinge, C.

Domínguez-Caballero, J. A.

Edwards, C.

Falldorf, C.

U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, 2nd ed. (Springer, 2015).

Faridian, A.

Ferrara, M. A.

Ferraro, P.

Finizio, A.

Ganti, R.

Gao, P.

Gdeisat, M. A.

Gerhardt, N. C.

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Near real-time digital holographic imaging on conventional central processing unit,” Proc. SPIE 11056, 110562I (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Digital holographic microscopy for sub-μm scale high aspect ratio structures in transparent materials,” Opt. Lasers Eng. 121, 441–447 (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Performance evaluation of digital holographic microscopy for rapid inspection,” in Digital Holography and Three-Dimensional Imaging (2019), paper Th3A.10.

Ghiglia, D. C.

Goddard, L. L.

Grilli, S.

Herráez, M. A.

Hofmann, M. R.

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Near real-time digital holographic imaging on conventional central processing unit,” Proc. SPIE 11056, 110562I (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Digital holographic microscopy for sub-μm scale high aspect ratio structures in transparent materials,” Opt. Lasers Eng. 121, 441–447 (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Performance evaluation of digital holographic microscopy for rapid inspection,” in Digital Holography and Three-Dimensional Imaging (2019), paper Th3A.10.

Hwang, S.-W.

Józwik, M.

Jüptner, W.

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[Crossref]

U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, 2nd ed. (Springer, 2015).

Kakue, T.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Katkovnik, V.

Kemper, B.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[Crossref]

Kim, M. K.

Körner, K.

Kostencka, J.

Kozacki, T.

Krajewski, R.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2006).

Kubota, T.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Kühn, J.

Kujawinska, M.

Lalor, M. J.

Langehanenberg, P.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[Crossref]

Lin, Y.-C.

Y.-C. Lin and C.-J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
[Crossref]

Loomis, N.

Magro, C.

Marian, A.

Marquet, P.

Matoba, O.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

McKeown, S. J.

Meshalkin, A.

Miao, J.

Mikula, M.

Montfort, F.

Naik, D.

Nguyen, T. H.

Nicola, S. D.

Nishio, K.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Odian, G.

G. Odian, Principles of Polymerization (Wiley, 2004).

Osten, W.

Ostendorf, A.

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Near real-time digital holographic imaging on conventional central processing unit,” Proc. SPIE 11056, 110562I (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Digital holographic microscopy for sub-μm scale high aspect ratio structures in transparent materials,” Opt. Lasers Eng. 121, 441–447 (2019).
[Crossref]

A. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, “Effect of a thin reflective film between substrate and photoresin on two-photon polymerization,” Addit. Manuf. 24, 658–666 (2018).
[Crossref]

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Performance evaluation of digital holographic microscopy for rapid inspection,” in Digital Holography and Three-Dimensional Imaging (2019), paper Th3A.10.

Otani, R.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Ovsianikov, A.

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[Crossref]

Pariani, G.

Patorski, K.

Pedrini, G.

Peng, X.

Pham, H.

Pierattini, G.

Popescu, G.

Quan, X.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Remmersmann, C.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[Crossref]

Rogers, J. A.

Romero, L. A.

Saetchnikov, A.

A. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, “Effect of a thin reflective film between substrate and photoresin on two-photon polymerization,” Addit. Manuf. 24, 658–666 (2018).
[Crossref]

Saetchnikov, A. V.

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Digital holographic microscopy for sub-μm scale high aspect ratio structures in transparent materials,” Opt. Lasers Eng. 121, 441–447 (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Near real-time digital holographic imaging on conventional central processing unit,” Proc. SPIE 11056, 110562I (2019).
[Crossref]

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Performance evaluation of digital holographic microscopy for rapid inspection,” in Digital Holography and Three-Dimensional Imaging (2019), paper Th3A.10.

Saetchnikov, V.

A. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, “Effect of a thin reflective film between substrate and photoresin on two-photon polymerization,” Addit. Manuf. 24, 658–666 (2018).
[Crossref]

Schnars, U.

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[Crossref]

U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, 2nd ed. (Springer, 2015).

Shevkunov, I.

Singh, A. K.

Stürwald, S.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[Crossref]

Tahara, T.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Takaki, Y.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Takeda, M.

Tcherniavskaia, E.

A. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, “Effect of a thin reflective film between substrate and photoresin on two-photon polymerization,” Addit. Manuf. 24, 658–666 (2018).
[Crossref]

Tian, L.

Trusiak, M.

Ura, S.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

von Bally, G.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[Crossref]

Wang, K.

Watson, J.

U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, 2nd ed. (Springer, 2015).

Wilke, M.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, 1975).

Xia, P.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Xu, L.

Yamamoto, S.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Yodh, A. G.

Yonesaka, R.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Yu, L.

Yunker, P. J.

Zhou, R.

Addit. Manuf. (1)

A. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, “Effect of a thin reflective film between substrate and photoresin on two-photon polymerization,” Addit. Manuf. 24, 658–666 (2018).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (10)

M. Mikuła, T. Kozacki, M. Józwik, and J. Kostencka, “Accurate shape measurement of focusing microstructures in Fourier digital holographic microscopy,” Appl. Opt. 57, A197–A204 (2018).
[Crossref]

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
[Crossref]

V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
[Crossref]

W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography,” Appl. Opt. 53, G44–G63 (2014).
[Crossref]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[Crossref]

L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046–5051 (2001).
[Crossref]

M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002).
[Crossref]

P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science,” Appl. Opt. 53, G33–G43 (2014).
[Crossref]

Appl. Surf. Sci. (1)

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

J. Opt. (1)

Y.-C. Lin and C.-J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
[Crossref]

J. Opt. Soc. Am. A (2)

Microscopy (1)

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Opt. Express (2)

Opt. Laser Eng. (1)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[Crossref]

Opt. Lasers Eng. (1)

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Digital holographic microscopy for sub-μm scale high aspect ratio structures in transparent materials,” Opt. Lasers Eng. 121, 441–447 (2019).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (1)

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Near real-time digital holographic imaging on conventional central processing unit,” Proc. SPIE 11056, 110562I (2019).
[Crossref]

Other (8)

V. R. Besaga, A. V. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, “Performance evaluation of digital holographic microscopy for rapid inspection,” in Digital Holography and Three-Dimensional Imaging (2019), paper Th3A.10.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2006).

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

G. Huebschen, I. Altpeter, R. Tschuncky, and H.-G. Herrmann, eds., Materials Characterization Using Nondestructive Evaluation (NDE) Methods (Woodhead, 2016).

R. Leach, ed., Optical Measurement of Surface Topography (Springer, 2011).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, 1975).

U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, 2nd ed. (Springer, 2015).

G. Odian, Principles of Polymerization (Wiley, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Geometry of sample illumination in the object beam and the off-axis overlapping of the interfering waves (adapted from [17]): 1, condenser; 2, sample; 3, objective; 4, compensation lens; 5, beam splitter; 6, long-pass filter; 7, CMOS camera. Elements highlighted with a dashed rectangle (8, 9, guiding mirrors and 10, focusing lens) are introduced for providing external excitation of refractive index changes in a photosensitive material with focused laser light of 405 nm wavelength (see Section 3.B).
Fig. 2.
Fig. 2. Flow chart of the data analysis applied within the study. n and d stand for refractive index and dimensions, correspondingly. Dashed double arrows in green depict the parallel evaluation for the instrument calibration.
Fig. 3.
Fig. 3. DHM accuracy for static objects’ characterization. (a) DHM and (b) AFM results for topography maps of the same microchannels in transparent polymer layer. (c) Example of a cross-sectional scan at an arbitrary plane [marked with a solid white line on subfigures (a) and (b)]: circles and line in blue correspond to the data retrieved via DHM approach, whereas squares and line in green stand for AFM results [18].
Fig. 4.
Fig. 4. Online holographic monitoring of the refractive index evolution: phase maps corresponding to (a) the initial state of the sample before the exposure started and exposure times of (b) 0.5 s, (c) 1.0 s, (d) 2.0 s, (e) 3.0 s. (f) Explosion of the polymer after 3.0 s of illumination. All figures represent the same area of 400 × 400 px .
Fig. 5.
Fig. 5. Change in the material’s refractive index Δ n caused by the photoinduced polymerization. Error bars with blue circles stand for the Δ n obtained versus the exposure time. Red dashed line represents the fitting curve for the experimental data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φ = 2 π Δ h Δ n λ ,
Δ n ( t ) = a 1 + exp [ b ( t c ) ] ,

Metrics