Abstract

Since the introduction of optical trap displays in 2018, there has been significant interest in further developing this technology. In an effort to channel interest in the most productive directions, this work seeks to illuminate those areas that, in the authors’ opinion, are most critical to the ultimate success of optical trap displays as a platform for aerial 3D imaging. These areas include trapping, scanning, scaling, robustness, safety, and occlusion.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]

Jisoo Hong, Youngmin Kim, Hee-Jin Choi, Joonku Hahn, Jae-Hyeung Park, Hwi Kim, Sung-Wook Min, Ni Chen, and Byoungho Lee
Appl. Opt. 50(34) H87-H115 (2011)

Volumetric bubble display

Kota Kumagai, Satoshi Hasegawa, and Yoshio Hayasaki
Optica 4(3) 298-302 (2017)

Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra

Yong-Le Pan, Steven C. Hill, and Mark Coleman
Opt. Express 20(5) 5325-5334 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
    [Crossref]
  2. D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, “Volumetric displays: turning 3-D inside-out,” Opt. Photonics News 29(6), 26–33 (2018).
    [Crossref]
  3. L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 962–965 (2005).
    [Crossref]
  4. A. Turpin, V. Shvedov, C. Hnatovsky, Y. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: a reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
    [Crossref]
  5. J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
    [Crossref]
  6. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
    [Crossref]
  7. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett. 36, 1491–1493 (2011).
    [Crossref]
  8. P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett. 35, 2164–2166 (2010).
    [Crossref]
  9. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7, 839–854 (2013).
    [Crossref]
  10. Z. Gong, Y. L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
    [Crossref]
  11. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
    [Crossref]
  12. S. K. Bera, A. Kumar, S. Sil, T. K. Saha, T. Saha, and A. Banerjee, “Simultaneous measurement of mass and rotation of trapped absorbing particles in air,” Opt. Lett. 41, 4356–4359 (2016).
    [Crossref]
  13. THORLABS, “Large beam diameter scanning galvo systems,” 2019, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6057 .
  14. V. G. Shvedov, C. Hnatovsky, N. Shostka, A. V. Rode, and W. Krolikowski, “Optical manipulation of particle ensembles in air,” Opt. Lett. 37, 1934–1936 (2012).
    [Crossref]
  15. F. Liu, Z. Zhang, S. Fu, Y. Wei, T. Cheng, Q. Zhang, and X. Wu, “Manipulation of aerosols revolving in taper-ring optical traps,” Opt. Lett. 39, 100–103 (2014).
    [Crossref]
  16. Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
    [Crossref]
  17. K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4, 298–302 (2017).
    [Crossref]
  18. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
    [Crossref]
  19. F. Liu, Z. Zhang, Y. Wei, Q. Zhang, T. Cheng, and X. Wu, “Photophoretic trapping of multiple particles in tapered-ring optical field,” Opt. Express 22, 23716–23723 (2014).
    [Crossref]
  20. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
    [Crossref]
  21. S. McLaughlin, C. Leach, S. Gneiting, V. M. Bove, S. Jolly, and D. E. Smalley, “Progress on waveguide-based holographic video,” Chin. Opt. Lett. 14, 010003 (2016).
    [Crossref]
  22. A. Henrie, J. R. Codling, S. Gneiting, J. B. Christensen, P. Awerkamp, M. J. Burdette, and D. E. Smalley, “Hardware and software improvements to a low-cost horizontal parallax holographic video monitor,” Appl. Opt. 57, A122–A133 (2018).
    [Crossref]
  23. N.A.D.C.A. Association “Why clean air ducts?” https://nadca.com/homeowners/why-clean-air-ducts .
  24. “Safety of laser products—Part 1: Equipment classification and requirements,” (2014).
  25. O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46, 1244–1250 (2007).
    [Crossref]
  26. A. Shiraki, M. Ikeda, H. Nakayama, R. Hirayama, T. Kakue, T. Shimobaba, and T. Ito, “Efficient method for fabricating a directional volumetric display using strings displaying multiple images,” Appl. Opt. 57, A33–A38 (2018).
    [Crossref]
  27. D. Smalley, E. Nygaard, W. Rogers, and K. Qaderi, “Progress on photophoretic trap displays,” in Frontiers in Optics (Optical Society of America, 2018), paper FM4C-2.
  28. A. Hendrickson, “Radiometric levitation of opaque particles in a laser beam,” https://www.physics.byu.edu/thesis/archive/2005 .
  29. N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
    [Crossref]
  30. O. Jovanovic, “Photophoresis—Light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transfer 110, 889–901 (2009).
    [Crossref]
  31. J. Lin and Y. Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
    [Crossref]
  32. B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y. L. Pan, “Photophoretic trapping of airborne particles using ultraviolet illumination,” Opt. Express 23, 3630–3639 (2015).
    [Crossref]
  33. Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.
  34. P. Blanche, Brigham Young University, Clyde Engineering Building Campus Dr, Provo, UT 84604 (personal communication, 2017).
  35. SpaceX, “Starlink mission: mission overview,” 2019, https://www.spacex.com/sites/spacex/files/starlink_mission_press_kit.pdf .
  36. J. O’Callaghan, “SpaceX’s Starlink could cause cascades of space junk,” 2019, https://www.scientificamerican.com/article/spacexs-starlink-could-cause-cascades-of-space-junk/ .
  37. S. Tesh, “The politics of stress: the case of air traffic control,” Int. J. Health Serv. 14, 569–587 (1984).
    [Crossref]
  38. J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
    [Crossref]

2018 (6)

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, “Volumetric displays: turning 3-D inside-out,” Opt. Photonics News 29(6), 26–33 (2018).
[Crossref]

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

Z. Gong, Y. L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

A. Henrie, J. R. Codling, S. Gneiting, J. B. Christensen, P. Awerkamp, M. J. Burdette, and D. E. Smalley, “Hardware and software improvements to a low-cost horizontal parallax holographic video monitor,” Appl. Opt. 57, A122–A133 (2018).
[Crossref]

A. Shiraki, M. Ikeda, H. Nakayama, R. Hirayama, T. Kakue, T. Shimobaba, and T. Ito, “Efficient method for fabricating a directional volumetric display using strings displaying multiple images,” Appl. Opt. 57, A33–A38 (2018).
[Crossref]

2017 (1)

2016 (3)

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
[Crossref]

S. K. Bera, A. Kumar, S. Sil, T. K. Saha, T. Saha, and A. Banerjee, “Simultaneous measurement of mass and rotation of trapped absorbing particles in air,” Opt. Lett. 41, 4356–4359 (2016).
[Crossref]

S. McLaughlin, C. Leach, S. Gneiting, V. M. Bove, S. Jolly, and D. E. Smalley, “Progress on waveguide-based holographic video,” Chin. Opt. Lett. 14, 010003 (2016).
[Crossref]

2015 (2)

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y. L. Pan, “Photophoretic trapping of airborne particles using ultraviolet illumination,” Opt. Express 23, 3630–3639 (2015).
[Crossref]

2014 (3)

2013 (2)

A. Turpin, V. Shvedov, C. Hnatovsky, Y. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: a reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7, 839–854 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (3)

2009 (1)

O. Jovanovic, “Photophoresis—Light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transfer 110, 889–901 (2009).
[Crossref]

2007 (1)

2005 (1)

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 962–965 (2005).
[Crossref]

2002 (1)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

2000 (1)

J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
[Crossref]

1995 (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

1984 (1)

S. Tesh, “The politics of stress: the case of air traffic control,” Int. J. Health Serv. 14, 569–587 (1984).
[Crossref]

Alexson, D.

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7, 839–854 (2013).
[Crossref]

Awel, S.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Awerkamp, P.

Banerjee, A.

Bera, S. K.

Blanche, P.

P. Blanche, Brigham Young University, Clyde Engineering Building Campus Dr, Provo, UT 84604 (personal communication, 2017).

Bove, V. M.

Bowman, R.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Burdette, M. J.

Chapman, H. N.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Chen, Z.

Cheng, T.

Christensen, J. B.

Christodoulides, D. N.

Chun, W. S.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Codling, J. R.

Cossairt, O. S.

Costner, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7, 839–854 (2013).
[Crossref]

Desyatnikov, A. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

Dorval, R. K.

O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46, 1244–1250 (2007).
[Crossref]

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Eckerskorn, N.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7, 839–854 (2013).
[Crossref]

Favalora, G. E.

O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46, 1244–1250 (2007).
[Crossref]

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Fu, S.

Gao, H.

D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, “Volumetric displays: turning 3-D inside-out,” Opt. Photonics News 29(6), 26–33 (2018).
[Crossref]

Giovinco, M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Gneiting, S.

Gong, Z.

Z. Gong, Y. L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

Goodsell, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

Hall, D. M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Hasegawa, S.

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4, 298–302 (2017).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
[Crossref]

Hayasaki, Y.

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4, 298–302 (2017).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
[Crossref]

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

He, X.

Heckenberg, N. R.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

Heit, J. A.

J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
[Crossref]

Henrie, A.

Hernandez, D.

Hill, S. C.

Hill, S. L.

Hirayama, R.

Hnatovsky, C.

Hoshi, T.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
[Crossref]

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Howe, L.

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

Huang, S.

Iguchi, S.

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Ikeda, M.

Ito, T.

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

Jagla, W.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 962–965 (2005).
[Crossref]

Jägle, H.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 962–965 (2005).
[Crossref]

Jolly, S.

Jovanovic, O.

O. Jovanovic, “Photophoresis—Light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transfer 110, 889–901 (2009).
[Crossref]

Kakehi, Y.

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Kakue, T.

Kawahara, Y.

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Kirian, R. A.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Kivshar, Y. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

Krolikowski, W.

Kumagai, K.

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4, 298–302 (2017).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
[Crossref]

Kumar, A.

Küpper, J.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Kvavle, J.

D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, “Volumetric displays: turning 3-D inside-out,” Opt. Photonics News 29(6), 26–33 (2018).
[Crossref]

Laughlin, E.

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

Leach, C.

Li, Y. Q.

J. Lin and Y. Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Lin, J.

J. Lin and Y. Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Lindsey, M.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

Liu, F.

Loiko, Y. V.

McLaughlin, S.

Melton, L. J.

J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
[Crossref]

Mizutani, Y.

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Mohr, D. N.

J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
[Crossref]

Mompart, J.

Nakayama, H.

Napoli, J.

O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46, 1244–1250 (2007).
[Crossref]

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Nygaard, E.

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

D. Smalley, E. Nygaard, W. Rogers, and K. Qaderi, “Progress on photophoretic trap displays,” in Frontiers in Optics (Optical Society of America, 2018), paper FM4C-2.

O’Fallon, W. M.

J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
[Crossref]

Ochiai, Y.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
[Crossref]

Padgett, M. J.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Pan, Y. L.

Z. Gong, Y. L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y. L. Pan, “Photophoretic trapping of airborne particles using ultraviolet illumination,” Opt. Express 23, 3630–3639 (2015).
[Crossref]

Peatross, J.

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

Petterson, T. M.

J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
[Crossref]

Poon, T. C.

D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, “Volumetric displays: turning 3-D inside-out,” Opt. Photonics News 29(6), 26–33 (2018).
[Crossref]

Prakash, J.

Qaderi, K.

D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, “Volumetric displays: turning 3-D inside-out,” Opt. Photonics News 29(6), 26–33 (2018).
[Crossref]

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

D. Smalley, E. Nygaard, W. Rogers, and K. Qaderi, “Progress on photophoretic trap displays,” in Frontiers in Optics (Optical Society of America, 2018), paper FM4C-2.

Qiu, H.

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Rasmussen, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

Redding, B.

Rekimoto, J.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
[Crossref]

Richmond, M. J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Rode, A. V.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

V. G. Shvedov, C. Hnatovsky, N. Shostka, A. V. Rode, and W. Krolikowski, “Optical manipulation of particle ensembles in air,” Opt. Lett. 37, 1934–1936 (2012).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

Rogers, W.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

D. Smalley, E. Nygaard, W. Rogers, and K. Qaderi, “Progress on photophoretic trap displays,” in Frontiers in Optics (Optical Society of America, 2018), paper FM4C-2.

Rubinsztein-Dunlop, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

Saha, T.

Saha, T. K.

Sai, T.

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Salazar, M.

Sharpe, L. T.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 962–965 (2005).
[Crossref]

Shimobaba, T.

Shiraki, A.

Shostka, N.

Shvedov, V.

Shvedov, V. G.

Sil, S.

Silverstein, M. D.

J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
[Crossref]

Smalley, D.

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, “Volumetric displays: turning 3-D inside-out,” Opt. Photonics News 29(6), 26–33 (2018).
[Crossref]

D. Smalley, E. Nygaard, W. Rogers, and K. Qaderi, “Progress on photophoretic trap displays,” in Frontiers in Optics (Optical Society of America, 2018), paper FM4C-2.

Smalley, D. E.

Squire, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

Stockman, A.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 962–965 (2005).
[Crossref]

Takamiya, M.

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Tesh, S.

S. Tesh, “The politics of stress: the case of air traffic control,” Int. J. Health Serv. 14, 569–587 (1984).
[Crossref]

Turpin, A.

Uno, Y.

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

Van Wagoner, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

Videen, G.

Z. Gong, Y. L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

Wang, C.

Z. Gong, Y. L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y. L. Pan, “Photophoretic trapping of airborne particles using ultraviolet illumination,” Opt. Express 23, 3630–3639 (2015).
[Crossref]

Wang, J.

Wei, Y.

Wiedorn, M.

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7, 839–854 (2013).
[Crossref]

Wu, X.

Xu, P.

Zhan, M.

Zhang, P.

Zhang, Q.

Zhang, Z.

ACM Trans. Graph. (1)

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2016).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. Lin and Y. Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Arch. Intern. Med. (1)

J. A. Heit, M. D. Silverstein, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton, “Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study,” Arch. Intern. Med. 160, 809–815 (2000).
[Crossref]

Chin. Opt. Lett. (1)

Int. J. Health Serv. (1)

S. Tesh, “The politics of stress: the case of air traffic control,” Int. J. Health Serv. 14, 569–587 (1984).
[Crossref]

J. Mod. Opt. (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

Z. Gong, Y. L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

O. Jovanovic, “Photophoresis—Light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transfer 110, 889–901 (2009).
[Crossref]

J. Vis. (1)

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 962–965 (2005).
[Crossref]

Laser Photonics Rev. (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7, 839–854 (2013).
[Crossref]

Nature (1)

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, and K. Costner, “A photophoretic-trap volumetric display,” Nature 553, 486–490 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Photonics News (1)

D. Smalley, T. C. Poon, H. Gao, J. Kvavle, and K. Qaderi, “Volumetric displays: turning 3-D inside-out,” Opt. Photonics News 29(6), 26–33 (2018).
[Crossref]

Optica (1)

Phys. Rev. Appl. (1)

N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, “Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum,” Phys. Rev. Appl. 4, 064001 (2015).
[Crossref]

Phys. Rev. Lett. (1)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

Proc. SPIE (2)

J. Peatross, D. Smalley, W. Rogers, E. Nygaard, E. Laughlin, K. Qaderi, and L. Howe, “Volumetric display by movement of particles trapped in a laser via photophoresis,” Proc. SPIE 10723, 1072302 (2018).
[Crossref]

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Other (9)

THORLABS, “Large beam diameter scanning galvo systems,” 2019, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6057 .

Y. Uno, H. Qiu, T. Sai, S. Iguchi, Y. Mizutani, T. Hoshi, Y. Kawahara, Y. Kakehi, and M. Takamiya, “Luciola: a millimeter-scale light-emitting particle moving in mid-air based on acoustic levitation and wireless powering,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2018), Vol. 1, p. 166.

P. Blanche, Brigham Young University, Clyde Engineering Building Campus Dr, Provo, UT 84604 (personal communication, 2017).

SpaceX, “Starlink mission: mission overview,” 2019, https://www.spacex.com/sites/spacex/files/starlink_mission_press_kit.pdf .

J. O’Callaghan, “SpaceX’s Starlink could cause cascades of space junk,” 2019, https://www.scientificamerican.com/article/spacexs-starlink-could-cause-cascades-of-space-junk/ .

N.A.D.C.A. Association “Why clean air ducts?” https://nadca.com/homeowners/why-clean-air-ducts .

“Safety of laser products—Part 1: Equipment classification and requirements,” (2014).

D. Smalley, E. Nygaard, W. Rogers, and K. Qaderi, “Progress on photophoretic trap displays,” in Frontiers in Optics (Optical Society of America, 2018), paper FM4C-2.

A. Hendrickson, “Radiometric levitation of opaque particles in a laser beam,” https://www.physics.byu.edu/thesis/archive/2005 .

Supplementary Material (2)

NameDescription
» Visualization 1       Video of observed particle dynamics in several trials.
» Visualization 2       Video of animation created using optical trap display (OTD) technology. Video 1 taken at 24fps, video 2 on the right was taken at 30fps. Note the authors finger under the display output in video 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Photo of single-color, single-particle, vector, video rate, image 1 cm tall, circa 2016. (b) Photo of three-color, single-particle, line raster, not video rate image, 1 cm tall, circa 2018. (c) Conceptual image of three-color, multiple-particle, volume raster image, video rate, 20 cm tall.
Fig. 2.
Fig. 2. Multi-particle scaling. (a) Single-particle display with a complex pathing and simple illumination. (b) Multiple-particle display with a simple path and complex illumination. (c) Lab result showing a single-particle system (image courtesy of Joel Rasmussen). (d) Lab result showing multiple suspended particles in a linear array from a single laser source. (e) Concept showing a planar array of suspended particles rastering a volume image, video rate refresh, large scanning volume.
Fig. 3.
Fig. 3. Occlusion. (a) Anisotropy makes it possible to eclipse or occlude objects. (b) Setup for observing scatter from multiple angles simultaneously. (c) Isotropic scatter. (d) Anisotropic scatter. (e) Particle exhibiting isotropic scatter; this particle has relatively uniform scatter over 4pi steradians. (f) Particle exhibiting anisotropic scatter. (g) Two particles, one above the other, demonstrating alternating brightness moving from front to back [27].
Fig. 4.
Fig. 4. Interactive applications. (a) Composite of photos from first OTD animation (see Visualization 2). (b) Satellite surveillance concept. (c) Guided catheterization concept. (d) Corporeal AI agent “holonurse” concept.

Metrics