Abstract

We propose a Bessel-like composite vortex filter to perform high-contrast and power-controlled anisotropic edge enhancement with shadow-effect-free and low background noise. The background noise, which is commonly found and strongly decreases the filtered image quality in previous anisotropic vortex filters, is effectively reduced by suppressing the side lobes of the system point spread function, thereby increasing the image edge contrast to 0.98. The shadow effect is totally eliminated by keeping the radial symmetry of the filtering process, which makes edges sharper and improves image resolution. By introducing a weighting factor between two opposite vortex filter components, the power of edge enhancement becomes controllable. Numerical simulations and experimental results prove that the proposed filter achieves higher-contrast edge enhancement for both phase-contrast and amplitude-contrast objects.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image edge enhancement using Airy spiral phase filter

Yi Zhou, Shaotong Feng, Shouping Nie, Jun Ma, and Caojin Yuan
Opt. Express 24(22) 25258-25268 (2016)

Spiral phase filtering and orientation-selective edge detection/enhancement

Guohai Situ, Giancarlo Pedrini, and Wolfgang Osten
J. Opt. Soc. Am. A 26(8) 1788-1797 (2009)

Anisotropic edge enhancement with spiral zone plate under femtosecond laser illumination

Yi Zhou, Shaotong Feng, Shouping Nie, Jun Ma, and Caojin Yuan
Appl. Opt. 56(10) 2641-2648 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Cao, P. P. Banerjee, and T.-C. Poon, “Image edge enhancement with two cascaded acousto-optic cells with contrapropagating sound,” Appl. Opt. 37, 3007–3014 (1998).
    [Crossref]
  2. A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
    [Crossref]
  3. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
    [Crossref]
  4. D. Mawet, E. Serabyn, J. K. Wallace, and L. Pueyo, “Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph,” Opt. Lett. 36, 1506–1508 (2011).
    [Crossref]
  5. S. Greenberg and D. Kogan, “Structure-adaptive anisotropic filter applied to fingerprints,” Opt. Eng. (Bellingham, Wash.) 44, 127004 (2005).
    [Crossref]
  6. X. Chen, J. Tian, Y. Zhang, and X. Yang, “Enhancement of low quality fingerprints based on anisotropic filtering,” Lect. Notes Comput. Sci. 3832, 302–308 (2005).
    [Crossref]
  7. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
    [Crossref]
  8. S. Wei, S. Zhu, and X. Yuan, “Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter,” J. Opt. 13, 105704 (2011).
    [Crossref]
  9. X. Qiu, F. Li, W. Zhang, Z. Zhu, and L. Chen, “Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination,” Optica 5, 208–212 (2018).
    [Crossref]
  10. J. A. Davis, D. E. McNamra, D. M. Cottrell, and J. Campos, “Image processing with the radial Hilbert transform: theory and experiments,” Opt. Lett. 25, 99–101 (2000).
    [Crossref]
  11. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008).
    [Crossref]
  12. C. Guo, X. Liu, and X. Ren, “Optimal annular computer-generated holograms for the generation of optical vortices,” J. Opt. Soc. Am. A 22, 385–390 (2005).
    [Crossref]
  13. J. Chen, X. Yuan, X. Zhao, Z. Fang, and S. Zhu, “Generalized approach to modifying optical vortices with suppressed sidelobes using Bessel-like functions,” Opt. Lett. 34, 3289–3291 (2009).
    [Crossref]
  14. R. Gozali, T. Nguyen, E. Bendau, and R. Alfano, “Compact OAM microscope for edge enhancement of biomedical and object samples,” Rev. Sci. Instrum. 88, 093701 (2017).
    [Crossref]
  15. R. Alfano, R. Gozali, E. Bendau, T. Nguyen, and S. Mamani, “OAM microscope for edge enhancement of biomedical and condensed matter samples and objects,” U.S. patent application15/943, 331 (3September2019).
  16. M. Sharma, J. Joseph, and P. Senthilkumaran, “Fractional vortex dipole phase filter,” Appl. Phys. B 117, 325–332 (2014).
    [Crossref]
  17. J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep. 5, 15826 (2015).
    [Crossref]
  18. G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26, 1788–1797 (2009).
    [Crossref]
  19. M. Sharma, J. Joseph, and P. Senthilkumaran, “Selective edge enhancement using anisotropic vortex filter,” Appl. Opt. 50, 5279–5286 (2011).
    [Crossref]
  20. M. Sharma, J. Joseph, and P. Senthilkumaran, “Effect of aberrations in vortex spatial filtering,” Opt. Laser Eng. 50, 1501–1507 (2012).
    [Crossref]
  21. M. Sharma, J. Joseph, and P. Senthilkumaran, “Directional edge enhancement using superposed vortex filter,” Opt. Laser Technol. 57, 230–235 (2014).
    [Crossref]
  22. C. Guo, Y. Han, J. Xu, and J. Ping, “Radial Hilbert transform with Laguerre-Gaussian spatial filters,” Opt. Lett. 31, 1394–1396 (2006).
    [Crossref]
  23. Y. Zhou, S. Feng, S. Nie, J. Ma, and C. Yuan, “Image edge enhancement using Airy spiral phase filter,” Opt. Express 24, 25258–25268 (2016).
    [Crossref]
  24. B. Bhargava Ram, P. Senthilkumaran, and A. Sharma, “Polarization-based spatial filtering for directional and nondirectional edge enhancement using an S-waveplate,” Appl. Opt. 56, 3171–3178 (2017).
    [Crossref]
  25. B. B. Ram and P. Senthilkumaran, “Edge enhancement by negative Poincare-Hopf index filters,” Opt. Lett. 43, 1830–1833 (2018).
    [Crossref]
  26. M. Teich, M. Mattern, J. Sturm, L. Büttner, and W. C. Jürgen, “Spiral phase mask shadow-imaging for 3D-measurement of flow fields,” Opt. Express 24, 27371–27381 (2016).
    [Crossref]
  27. Y. Zhou, S. Feng, S. Nie, J. Ma, and C. Yuan, “Anisotropic edge enhancement with spiral zone plate under femtosecond laser illumination,” Appl. Opt. 56, 2641–2648 (2017).
    [Crossref]
  28. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
    [Crossref]
  29. X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
    [Crossref]

2018 (2)

2017 (4)

B. Bhargava Ram, P. Senthilkumaran, and A. Sharma, “Polarization-based spatial filtering for directional and nondirectional edge enhancement using an S-waveplate,” Appl. Opt. 56, 3171–3178 (2017).
[Crossref]

Y. Zhou, S. Feng, S. Nie, J. Ma, and C. Yuan, “Anisotropic edge enhancement with spiral zone plate under femtosecond laser illumination,” Appl. Opt. 56, 2641–2648 (2017).
[Crossref]

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

R. Gozali, T. Nguyen, E. Bendau, and R. Alfano, “Compact OAM microscope for edge enhancement of biomedical and object samples,” Rev. Sci. Instrum. 88, 093701 (2017).
[Crossref]

2016 (2)

2015 (1)

J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep. 5, 15826 (2015).
[Crossref]

2014 (2)

M. Sharma, J. Joseph, and P. Senthilkumaran, “Fractional vortex dipole phase filter,” Appl. Phys. B 117, 325–332 (2014).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Directional edge enhancement using superposed vortex filter,” Opt. Laser Technol. 57, 230–235 (2014).
[Crossref]

2012 (1)

M. Sharma, J. Joseph, and P. Senthilkumaran, “Effect of aberrations in vortex spatial filtering,” Opt. Laser Eng. 50, 1501–1507 (2012).
[Crossref]

2011 (3)

2009 (2)

2008 (2)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

2006 (1)

2005 (5)

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
[Crossref]

G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
[Crossref]

S. Greenberg and D. Kogan, “Structure-adaptive anisotropic filter applied to fingerprints,” Opt. Eng. (Bellingham, Wash.) 44, 127004 (2005).
[Crossref]

X. Chen, J. Tian, Y. Zhang, and X. Yang, “Enhancement of low quality fingerprints based on anisotropic filtering,” Lect. Notes Comput. Sci. 3832, 302–308 (2005).
[Crossref]

C. Guo, X. Liu, and X. Ren, “Optimal annular computer-generated holograms for the generation of optical vortices,” J. Opt. Soc. Am. A 22, 385–390 (2005).
[Crossref]

2003 (1)

2000 (1)

1998 (1)

Alfano, R.

R. Gozali, T. Nguyen, E. Bendau, and R. Alfano, “Compact OAM microscope for edge enhancement of biomedical and object samples,” Rev. Sci. Instrum. 88, 093701 (2017).
[Crossref]

R. Alfano, R. Gozali, E. Bendau, T. Nguyen, and S. Mamani, “OAM microscope for edge enhancement of biomedical and condensed matter samples and objects,” U.S. patent application15/943, 331 (3September2019).

Banerjee, P. P.

Bech, M.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Beléndez, A.

Bendau, E.

R. Gozali, T. Nguyen, E. Bendau, and R. Alfano, “Compact OAM microscope for edge enhancement of biomedical and object samples,” Rev. Sci. Instrum. 88, 093701 (2017).
[Crossref]

R. Alfano, R. Gozali, E. Bendau, T. Nguyen, and S. Mamani, “OAM microscope for edge enhancement of biomedical and condensed matter samples and objects,” U.S. patent application15/943, 331 (3September2019).

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008).
[Crossref]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
[Crossref]

Bhargava Ram, B.

Brönnimann, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Bunk, O.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Büttner, L.

Campos, J.

Cao, D.

Chen, J.

Chen, L.

X. Qiu, F. Li, W. Zhang, Z. Zhu, and L. Chen, “Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination,” Optica 5, 208–212 (2018).
[Crossref]

J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep. 5, 15826 (2015).
[Crossref]

Chen, X.

X. Chen, J. Tian, Y. Zhang, and X. Yang, “Enhancement of low quality fingerprints based on anisotropic filtering,” Lect. Notes Comput. Sci. 3832, 302–308 (2005).
[Crossref]

Chu, J.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Cottrell, D. M.

David, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Davis, J. A.

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Fan, H.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Fang, Z.

Feng, S.

Foo, G.

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008).
[Crossref]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
[Crossref]

Gallego, S.

Gozali, R.

R. Gozali, T. Nguyen, E. Bendau, and R. Alfano, “Compact OAM microscope for edge enhancement of biomedical and object samples,” Rev. Sci. Instrum. 88, 093701 (2017).
[Crossref]

R. Alfano, R. Gozali, E. Bendau, T. Nguyen, and S. Mamani, “OAM microscope for edge enhancement of biomedical and condensed matter samples and objects,” U.S. patent application15/943, 331 (3September2019).

Greenberg, S.

S. Greenberg and D. Kogan, “Structure-adaptive anisotropic filter applied to fingerprints,” Opt. Eng. (Bellingham, Wash.) 44, 127004 (2005).
[Crossref]

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Guo, C.

Han, Y.

Hu, Y.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008).
[Crossref]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
[Crossref]

Joseph, J.

M. Sharma, J. Joseph, and P. Senthilkumaran, “Directional edge enhancement using superposed vortex filter,” Opt. Laser Technol. 57, 230–235 (2014).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Fractional vortex dipole phase filter,” Appl. Phys. B 117, 325–332 (2014).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Effect of aberrations in vortex spatial filtering,” Opt. Laser Eng. 50, 1501–1507 (2012).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Selective edge enhancement using anisotropic vortex filter,” Appl. Opt. 50, 5279–5286 (2011).
[Crossref]

Jürgen, W. C.

Kogan, D.

S. Greenberg and D. Kogan, “Structure-adaptive anisotropic filter applied to fingerprints,” Opt. Eng. (Bellingham, Wash.) 44, 127004 (2005).
[Crossref]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Li, F.

Li, G.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Li, J.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Liu, X.

Ma, J.

Mamani, S.

R. Alfano, R. Gozali, E. Bendau, T. Nguyen, and S. Mamani, “OAM microscope for edge enhancement of biomedical and condensed matter samples and objects,” U.S. patent application15/943, 331 (3September2019).

Márquez, A.

Mattern, M.

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008).
[Crossref]

Mawet, D.

McNamra, D. E.

Neipp, C.

Nguyen, T.

R. Gozali, T. Nguyen, E. Bendau, and R. Alfano, “Compact OAM microscope for edge enhancement of biomedical and object samples,” Rev. Sci. Instrum. 88, 093701 (2017).
[Crossref]

R. Alfano, R. Gozali, E. Bendau, T. Nguyen, and S. Mamani, “OAM microscope for edge enhancement of biomedical and condensed matter samples and objects,” U.S. patent application15/943, 331 (3September2019).

Ni, J.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Nie, S.

Ortuño, M.

Osten, W.

Palacios, D. M.

Pascual, I.

Pedrini, G.

Pfeiffer, F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Ping, J.

Poon, T.-C.

Pueyo, L.

Qi, Q.

J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep. 5, 15826 (2015).
[Crossref]

Qiu, X.

Ram, B. B.

Ren, F.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Ren, X.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008).
[Crossref]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
[Crossref]

Senthilkumaran, P.

B. B. Ram and P. Senthilkumaran, “Edge enhancement by negative Poincare-Hopf index filters,” Opt. Lett. 43, 1830–1833 (2018).
[Crossref]

B. Bhargava Ram, P. Senthilkumaran, and A. Sharma, “Polarization-based spatial filtering for directional and nondirectional edge enhancement using an S-waveplate,” Appl. Opt. 56, 3171–3178 (2017).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Directional edge enhancement using superposed vortex filter,” Opt. Laser Technol. 57, 230–235 (2014).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Fractional vortex dipole phase filter,” Appl. Phys. B 117, 325–332 (2014).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Effect of aberrations in vortex spatial filtering,” Opt. Laser Eng. 50, 1501–1507 (2012).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Selective edge enhancement using anisotropic vortex filter,” Appl. Opt. 50, 5279–5286 (2011).
[Crossref]

Serabyn, E.

Sharma, A.

Sharma, M.

M. Sharma, J. Joseph, and P. Senthilkumaran, “Directional edge enhancement using superposed vortex filter,” Opt. Laser Technol. 57, 230–235 (2014).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Fractional vortex dipole phase filter,” Appl. Phys. B 117, 325–332 (2014).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Effect of aberrations in vortex spatial filtering,” Opt. Laser Eng. 50, 1501–1507 (2012).
[Crossref]

M. Sharma, J. Joseph, and P. Senthilkumaran, “Selective edge enhancement using anisotropic vortex filter,” Appl. Opt. 50, 5279–5286 (2011).
[Crossref]

Situ, G.

Sturm, J.

Su, Y.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Swartzlander, G. A.

Teich, M.

Tian, J.

X. Chen, J. Tian, Y. Zhang, and X. Yang, “Enhancement of low quality fingerprints based on anisotropic filtering,” Lect. Notes Comput. Sci. 3832, 302–308 (2005).
[Crossref]

Wallace, J. K.

Wang, C.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Wang, J.

J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep. 5, 15826 (2015).
[Crossref]

Wang, Y.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Wang, Z.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Wei, S.

S. Wei, S. Zhu, and X. Yuan, “Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter,” J. Opt. 13, 105704 (2011).
[Crossref]

Wu, D.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Xu, J.

Yang, X.

X. Chen, J. Tian, Y. Zhang, and X. Yang, “Enhancement of low quality fingerprints based on anisotropic filtering,” Lect. Notes Comput. Sci. 3832, 302–308 (2005).
[Crossref]

Yuan, C.

Yuan, X.

S. Wei, S. Zhu, and X. Yuan, “Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter,” J. Opt. 13, 105704 (2011).
[Crossref]

J. Chen, X. Yuan, X. Zhao, Z. Fang, and S. Zhu, “Generalized approach to modifying optical vortices with suppressed sidelobes using Bessel-like functions,” Opt. Lett. 34, 3289–3291 (2009).
[Crossref]

Zhang, W.

X. Qiu, F. Li, W. Zhang, Z. Zhu, and L. Chen, “Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination,” Optica 5, 208–212 (2018).
[Crossref]

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep. 5, 15826 (2015).
[Crossref]

Zhang, X.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Zhang, Y.

X. Chen, J. Tian, Y. Zhang, and X. Yang, “Enhancement of low quality fingerprints based on anisotropic filtering,” Lect. Notes Comput. Sci. 3832, 302–308 (2005).
[Crossref]

Zhang, Z.

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

Zhao, X.

Zheng, S.

J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep. 5, 15826 (2015).
[Crossref]

Zhou, Y.

Zhu, S.

S. Wei, S. Zhu, and X. Yuan, “Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter,” J. Opt. 13, 105704 (2011).
[Crossref]

J. Chen, X. Yuan, X. Zhao, Z. Fang, and S. Zhu, “Generalized approach to modifying optical vortices with suppressed sidelobes using Bessel-like functions,” Opt. Lett. 34, 3289–3291 (2009).
[Crossref]

Zhu, Z.

Appl. Opt. (4)

Appl. Phys. B (1)

M. Sharma, J. Joseph, and P. Senthilkumaran, “Fractional vortex dipole phase filter,” Appl. Phys. B 117, 325–332 (2014).
[Crossref]

Appl. Phys. Lett. (1)

X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, and J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Appl. Phys. Lett. 111, 061901 (2017).
[Crossref]

J. Microsc. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008).
[Crossref]

J. Opt. (1)

S. Wei, S. Zhu, and X. Yuan, “Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter,” J. Opt. 13, 105704 (2011).
[Crossref]

J. Opt. Soc. Am. A (2)

Lect. Notes Comput. Sci. (1)

X. Chen, J. Tian, Y. Zhang, and X. Yang, “Enhancement of low quality fingerprints based on anisotropic filtering,” Lect. Notes Comput. Sci. 3832, 302–308 (2005).
[Crossref]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref]

Opt. Eng. (Bellingham, Wash.) (1)

S. Greenberg and D. Kogan, “Structure-adaptive anisotropic filter applied to fingerprints,” Opt. Eng. (Bellingham, Wash.) 44, 127004 (2005).
[Crossref]

Opt. Express (2)

Opt. Laser Eng. (1)

M. Sharma, J. Joseph, and P. Senthilkumaran, “Effect of aberrations in vortex spatial filtering,” Opt. Laser Eng. 50, 1501–1507 (2012).
[Crossref]

Opt. Laser Technol. (1)

M. Sharma, J. Joseph, and P. Senthilkumaran, “Directional edge enhancement using superposed vortex filter,” Opt. Laser Technol. 57, 230–235 (2014).
[Crossref]

Opt. Lett. (7)

Optica (1)

Phys. Rev. Lett. (1)

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

R. Gozali, T. Nguyen, E. Bendau, and R. Alfano, “Compact OAM microscope for edge enhancement of biomedical and object samples,” Rev. Sci. Instrum. 88, 093701 (2017).
[Crossref]

Sci. Rep. (1)

J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep. 5, 15826 (2015).
[Crossref]

Other (1)

R. Alfano, R. Gozali, E. Bendau, T. Nguyen, and S. Mamani, “OAM microscope for edge enhancement of biomedical and condensed matter samples and objects,” U.S. patent application15/943, 331 (3September2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of the $4f$ imaging system.
Fig. 2.
Fig. 2. (a1)–2(e1) PSFs of the fractional vortex filter, off-axis vortex filter, the conventional superposed vortex filter, LGSF, and BLCVF. (a2)–(e2) Amplitude profiles in radial section of (a1)–(e1), respectively.
Fig. 3.
Fig. 3. First row: (a1)–(e1) Simulation results by the fractional vortex filter, off-axis vortex filter, the conventional superposed vortex filter, LGSF, and BLCVF, respectively. Second row (a2)–(e2): Intensity section distribution of (a1)–(e1) along the blue line, respectively.
Fig. 4.
Fig. 4. (a)–(d) Edge enhancement of amplitude-contrast resolution target with different ${\phi _0}$ . Values of ${\phi _{0}}$ are (a) 0, (b)  $\pi /4$ , (c)  $\pi /2$ , (d)  ${3}\pi /{4}$ .
Fig. 5.
Fig. 5. (a)–(e) Simulation results of BLCVF with ${\phi _{0}} = \pi /2$ and different weighting factor $c$ . Value of weighting factor $c$ is (a) 0, (b) 0.3, (c) 0.5, (d) 0.7, (e) 1. Figure 7(f) is the intensity section distribution of (a)–(e) along the colorful lines.
Fig. 6.
Fig. 6. (a) Experiment setup of the proposed anisotropic edge enhancement with BLCVF system. (b) CGH based on BLCVF.
Fig. 7.
Fig. 7. (a) and (b) Experimental results in using conventional superposed vortex filter and BLCVF, respectively. (c) and (d) Intensity section distribution of (a) and (b) along the blue line, respectively.
Fig. 8.
Fig. 8. (a)–(d) Edge enhancement of amplitude-contrast letters “1X” with different ${\phi _0}$ . (e)–(h) Edge enhancement of phase-contrast pattern ‘“four coins” with different ${\phi _0}$ . Values of ${\phi _0}$ are (a), (e) 0, (b), (f)  $\pi /4$ , (c), (g)  $\pi /2$ , (d), (h)  ${3}\pi /{4}$ .
Fig. 9.
Fig. 9. (a)–(e) Experimental results of BLCVF with ${\phi _{0}} = \pi /2$ and different weighting factor $c$ . Value of weighting factor $c$ is (a) 0, (b) 0.3, (c) 0.5, (d) 0.7, (e) 1. (f) Intensity section distribution of (a)–(e) along the colorful lines.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

O ( ρ , ϕ ) = F [ o ( r 0 , θ 0 ) ] × T ( ρ , ϕ ) .
T ( ρ , ϕ ) = J 2 ( α ρ ) ρ c i r c l ( ρ R 0 ) × { c exp [ i l ( ϕ + ϕ 0 ) ] + exp [ i l ( ϕ + ϕ 0 ) ] } ,
t ( r 1 , θ 1 ) = 2 π λ f 2 { c exp [ i l ( ϕ + ϕ 0 ) ] exp [ i l ( ϕ + ϕ 0 ) ] } × 0 R 0 J 2 ( α ρ ) J 1 ( 2 π ρ r 1 λ f 2 ) d ρ ,

Metrics