Abstract

Microscopic three-dimensional imaging and phase quantification for objects hidden behind a scattering medium by using in-line phase-shift digital holography are proposed. A spatial resolution of 1.81 µm and highly accurate quantitative phase imaging are demonstrated for objects behind a scatter plate. Three-dimensional imaging was confirmed using objects with a depth difference of 1.32 mm. Further, imaging was performed using rat skin as a demonstration for imaging through a complex multilayer scattering medium, where a spatial resolution close to the theoretically predicted value was achieved by experiment.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional microscopy with phase-shifting digital holography

Tong Zhang and Ichirou Yamaguchi
Opt. Lett. 23(15) 1221-1223 (1998)

Three-dimensional imaging through scattering media using a single pixel detector

Kobra Soltanlou and Hamid Latifi
Appl. Opt. 58(28) 7716-7726 (2019)

Visualization of internal structure and internal stress in visibly opaque objects using full-field phase-shifting terahertz digital holography

Masatomo Yamagiwa, Takeo Minamikawa, Fui Minamiji, Takahiko Mizuno, Yu Tokizane, Ryo Oe, Hidenori Koresawa, Yasuhiro Mizutani, Tetsuo Iwata, Hirotsugu Yamamoto, and Takeshi Yasui
Opt. Express 27(23) 33854-33868 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Liao, D. Lu, W. He, G. Pedrini, W. Osten, and X. Peng, “Improving reconstruction of speckle correlation imaging by using a modified phase retrieval algorithm with the number of nonzero-pixels constraint,” Appl. Opt. 58, 473–478 (2019).
    [Crossref]
  2. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
    [Crossref]
  3. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  4. R. K. Singh, A. M. Sharma, and B. Das, “Quantitative phase-contrast imaging through a scattering media,” Opt. Lett. 39, 5054–5057 (2014).
    [Crossref]
  5. A. K. Singh, G. Pedrini, M. Takeda, and W. Osten, “Scatter-plate microscope for lensless microscopy with diffraction limited resolution,” Sci. Rep. 7, 10687 (2017).
    [Crossref]
  6. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966).
    [Crossref]
  7. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
    [Crossref]
  8. H. Kogelnik and K. S. Pennington, “Holographic imaging through a random medium,” J. Opt. Soc. Am. 58, 273–274 (1968).
    [Crossref]
  9. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
    [Crossref]
  10. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  11. M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
  12. T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
    [Crossref]
  13. P. Ferraro, D. Alferi, S. D. Nicola, L. D. Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
    [Crossref]
  14. B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, “High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s,” Opt. Express 18, 21841–21850 (2010).
    [Crossref]
  15. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
    [Crossref]
  16. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref]
  17. E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38, 1319–1321 (2013).
    [Crossref]
  18. W. J. Choi, D. I. Jeon, S. Ahn, J. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18, 23285–23295 (2010).
    [Crossref]
  19. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806–1812 (2005).
    [Crossref]
  20. D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
    [Crossref]
  21. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [Crossref]
  22. K. Inomoto, H. Satake, S. Kodama, K. Ikeda, K. Okamoto, and E. Watanabe, “Planar lightwave circuit digital holographic microscope,” Jpn. J. Appl. Phys. 58, SKKC01 (2019).
    [Crossref]
  23. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8 × 8 optical matrix switch,” J. Lightwave Technol. 20, 993–1000 (2002).
    [Crossref]
  24. N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6, 1003–1010 (1998).
    [Crossref]
  25. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref]
  26. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).
    [Crossref]
  27. M. Born and E. Wolf, eds. Principles of Optics (Pergamon, 1980), pp. 418–420.
  28. MathWorks, “unwrap,” https://www.mathworks.com/help/matlab/ref/unwrap.html .
  29. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” (1994).

2019 (2)

2018 (1)

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

2017 (3)

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, G. Pedrini, M. Takeda, and W. Osten, “Scatter-plate microscope for lensless microscopy with diffraction limited resolution,” Sci. Rep. 7, 10687 (2017).
[Crossref]

2014 (2)

2013 (1)

2012 (2)

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

2010 (2)

2009 (1)

2006 (1)

2005 (2)

2002 (1)

2001 (1)

1998 (1)

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6, 1003–1010 (1998).
[Crossref]

1997 (1)

1968 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

1966 (2)

E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966).
[Crossref]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Ahn, S.

Alferi, D.

Anand, A.

Bal, E.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Charrière, F.

Choi, W. J.

Colomb, T.

Cuche, E.

Das, B.

Depeursinge, C.

Depeursinge, C. D.

Emery, Y.

Fercher, A. F.

Ferraro, P.

Finizio, A.

Goh, T.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Grajciar, B.

Greenspan, H.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
[Crossref]

He, W.

Himeno, A.

Hoshiba, T.

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Ikeda, K.

K. Inomoto, H. Satake, S. Kodama, K. Ikeda, K. Okamoto, and E. Watanabe, “Planar lightwave circuit digital holographic microscope,” Jpn. J. Appl. Phys. 58, SKKC01 (2019).
[Crossref]

Inomoto, K.

K. Inomoto, H. Satake, S. Kodama, K. Ikeda, K. Okamoto, and E. Watanabe, “Planar lightwave circuit digital holographic microscope,” Jpn. J. Appl. Phys. 58, SKKC01 (2019).
[Crossref]

Jackson, D. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Javidi, B.

Jeon, D. I.

Jinguji, K.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6, 1003–1010 (1998).
[Crossref]

Kasahara, R.

Kato, J.

Kawachi, M.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6, 1003–1010 (1998).
[Crossref]

Kim, M. K.

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).

Kim, S.

Kodama, S.

K. Inomoto, H. Satake, S. Kodama, K. Ikeda, K. Okamoto, and E. Watanabe, “Planar lightwave circuit digital holographic microscope,” Jpn. J. Appl. Phys. 58, SKKC01 (2019).
[Crossref]

Kogelnik, H.

Kühn, J.

Kuyatt, C. E.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” (1994).

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Lee, B. H.

Lehareinger, Y.

Lehmann, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Leitgeb, R. A.

Leith, E. N.

Liao, M.

Lu, D.

Magistretti, P.

Marquet, P.

Massatsch, P.

Matoba, O.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Matsui, S.

Mizuno, J.

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Naik, D. N.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

Nicola, S. D.

Ohta, S.

Okamoto, K.

K. Inomoto, H. Satake, S. Kodama, K. Ikeda, K. Okamoto, and E. Watanabe, “Planar lightwave circuit digital holographic microscope,” Jpn. J. Appl. Phys. 58, SKKC01 (2019).
[Crossref]

Osten, W.

M. Liao, D. Lu, W. He, G. Pedrini, W. Osten, and X. Peng, “Improving reconstruction of speckle correlation imaging by using a modified phase retrieval algorithm with the number of nonzero-pixels constraint,” Appl. Opt. 58, 473–478 (2019).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, G. Pedrini, M. Takeda, and W. Osten, “Scatter-plate microscope for lensless microscopy with diffraction limited resolution,” Sci. Rep. 7, 10687 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

Otani, R.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Pavillon, N.

Pedrini, G.

M. Liao, D. Lu, W. He, G. Pedrini, W. Osten, and X. Peng, “Improving reconstruction of speckle correlation imaging by using a modified phase retrieval algorithm with the number of nonzero-pixels constraint,” Appl. Opt. 58, 473–478 (2019).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, G. Pedrini, M. Takeda, and W. Osten, “Scatter-plate microscope for lensless microscopy with diffraction limited resolution,” Sci. Rep. 7, 10687 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

Peng, X.

Pennington, K. S.

Petrocellis, L. D.

Pierattini, G.

Quan, X.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Rappaz, B.

Roitshtain, D.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
[Crossref]

Satake, H.

K. Inomoto, H. Satake, S. Kodama, K. Ikeda, K. Okamoto, and E. Watanabe, “Planar lightwave circuit digital holographic microscope,” Jpn. J. Appl. Phys. 58, SKKC01 (2019).
[Crossref]

Satterwhite, L. L.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
[Crossref]

Seelamantula, C. S.

Shaked, N. T.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
[Crossref]

Sharma, A. M.

Singh, A. K.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, G. Pedrini, M. Takeda, and W. Osten, “Scatter-plate microscope for lensless microscopy with diffraction limited resolution,” Sci. Rep. 7, 10687 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

Singh, A. S. G.

Singh, R. K.

Sugita, A.

Tahara, T.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Takaki, Y.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Takato, N.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6, 1003–1010 (1998).
[Crossref]

Takeda, M.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, G. Pedrini, M. Takeda, and W. Osten, “Scatter-plate microscope for lensless microscopy with diffraction limited resolution,” Sci. Rep. 7, 10687 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

Taylor, B. N.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” (1994).

Toba, H.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6, 1003–1010 (1998).
[Crossref]

Unser, M.

Upatnieks, J.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Watanabe, E.

K. Inomoto, H. Satake, S. Kodama, K. Ikeda, K. Okamoto, and E. Watanabe, “Planar lightwave circuit digital holographic microscope,” Jpn. J. Appl. Phys. 58, SKKC01 (2019).
[Crossref]

E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38, 1319–1321 (2013).
[Crossref]

Wolbromsky, L.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
[Crossref]

Yamaguchi, I.

Yanagisawa, M.

Yasu, M.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8 × 8 optical matrix switch,” J. Lightwave Technol. 20, 993–1000 (2002).
[Crossref]

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6, 1003–1010 (1998).
[Crossref]

Yoon, J.

Zhang, T.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Int. Soc. Adv. Cytom. (1)

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Int. Soc. Adv. Cytom. 91A, 482–493 (2017).
[Crossref]

J. Lightwave Technol. (2)

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8 × 8 optical matrix switch,” J. Lightwave Technol. 20, 993–1000 (2002).
[Crossref]

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6, 1003–1010 (1998).
[Crossref]

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (1)

K. Inomoto, H. Satake, S. Kodama, K. Ikeda, K. Okamoto, and E. Watanabe, “Planar lightwave circuit digital holographic microscope,” Jpn. J. Appl. Phys. 58, SKKC01 (2019).
[Crossref]

Light Sci. Appl. (1)

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

Microscopy (1)

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Sci. Rep. (1)

A. K. Singh, G. Pedrini, M. Takeda, and W. Osten, “Scatter-plate microscope for lensless microscopy with diffraction limited resolution,” Sci. Rep. 7, 10687 (2017).
[Crossref]

Other (4)

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).

M. Born and E. Wolf, eds. Principles of Optics (Pergamon, 1980), pp. 418–420.

MathWorks, “unwrap,” https://www.mathworks.com/help/matlab/ref/unwrap.html .

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the proposed optical system for imaging objects behind a scattering medium.
Fig. 2.
Fig. 2. Flow chart of the proposed method.
Fig. 3.
Fig. 3. Schematic illustration of the experimental system for 3D imaging through a scattering medium. HWP, half-wave plate; PBS, polarization beam splitter; M, mirror; OL, objective lens; O, object, BS, beam splitter; S, scattering medium; L, lens.
Fig. 4.
Fig. 4. Spatial resolution evaluation of proposed imaging system for objects behind the scatter plate. (a) One of the four phase-shifted interference fringes. (b) Intensity of complex signal $U$ . (c) Reconstructed intensity image. (d) MTF evaluation. (e) Cross section of the reconstructed image for element 6 in group 4 (278 LP/mm). (f) Magnified pictures for element 6 in group 4 in (c).
Fig. 5.
Fig. 5. Quantitative phase imaging results. (a) Intensity and (b) phase of complex signal $U$ . (c) Reconstructed intensity image and (d) reconstructed phase image of a glass bead. (e) Comparison between experimental phase values (dashed line) and theoretically predicted values (solid line) for phase images of the glass bead.
Fig. 6.
Fig. 6. 3D imaging method and results. (a) An illustration of a sample containing a glass bead and the grid. (b) Reconstructed images were obtained by propagation calculations. Reconstructed image with a focus on (c) the grid and (d) the glass bead.
Fig. 7.
Fig. 7. Imaging using biological tissue as the scattering medium using the proposed in-line phase-shift DH system. (a) Wistar rat skin image of the epidermis containing microvessels taken by conventional optical microscope. Intensity of complex signal $U$ using rat skin of (c) thickness 516 µm and (d) thickness 634 µm. Reconstructed intensity images using rat skin with a (d) thickness of 516 µm and (e) thickness of 634 µm. (f) MTF evaluation of images in (d) and (e).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | u O ( x , y ) e x p [ i ϕ s ( x , y ) ] + u R ( x , y ) e x p [ i ϕ s ( x , y ) ] | 2 = | u O ( x , y ) | 2 + | u R ( x , y ) | 2 + u O ( x , y ) u R ( x , y ) + u R ( x , y ) u O ( x , y ) ,
U = 1 4 [ { I ( 0 ) I ( π ) } i { I ( 3 π 2 ) I ( π 2 ) } ] .
δ x 0 = 0.61 λ N A 1.22 λ z o D ,
Δ f = ( f n b ) 2 Δ n b 2 + ( f n m ) 2 Δ n m 2 + ( f L ) 2 Δ L 2 ,

Metrics