T. Nguyen, A. Thai, P. Adwani, and G. Nehmetallah, “Autofocusing of fluorescent microscopic images through deep learning convolutional neural networks,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper W3A.32.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).

[Crossref]

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully convolutional neural networks for remote sensing image classification,” in Geoscience & Remote Sensing Symposium (2016).

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).

[Crossref]

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

X. Lin, Y. Wu, C. Wu, L. Yao, X. Wu, L. Chen, and K. Cen, “Evolution of volatile cloud in pulverized coal combustion with high-speed digital inline holographic visualization,” Fuel 241, 199–206 (2019).

[Crossref]

Y. Wu, L. Yao, X. Wu, J. Chen, G. Grehan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel 206, 429–436 (2017).

[Crossref]

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

L. C. Yao, X. C. Wu, X. D. Lin, Y. C. Wu, L. H. Chen, X. Gao, and K. F. Cen, “Measurement of burning biomass particles via high-speed digital holography,” Laser Optoelectron. Prog. 56, 68–74 (2019).

L. C. Yao, C. Y. Wu, Y. C. Wu, L. H. Chen, J. Chen, X. C. Wu, and K. F. Cen, “Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography,” Proc. Combust. Inst. 37, 2911–2918 (2019).

[Crossref]

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).

[Crossref]

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully convolutional neural networks for remote sensing image classification,” in Geoscience & Remote Sensing Symposium (2016).

L. C. Yao, C. Y. Wu, Y. C. Wu, L. H. Chen, J. Chen, X. C. Wu, and K. F. Cen, “Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography,” Proc. Combust. Inst. 37, 2911–2918 (2019).

[Crossref]

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

Y. Wu, L. Yao, X. Wu, J. Chen, G. Grehan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel 206, 429–436 (2017).

[Crossref]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).

[Crossref]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).

[Crossref]

X. Lin, Y. Wu, C. Wu, L. Yao, X. Wu, L. Chen, and K. Cen, “Evolution of volatile cloud in pulverized coal combustion with high-speed digital inline holographic visualization,” Fuel 241, 199–206 (2019).

[Crossref]

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

L. C. Yao, X. C. Wu, X. D. Lin, Y. C. Wu, L. H. Chen, X. Gao, and K. F. Cen, “Measurement of burning biomass particles via high-speed digital holography,” Laser Optoelectron. Prog. 56, 68–74 (2019).

L. C. Yao, C. Y. Wu, Y. C. Wu, L. H. Chen, J. Chen, X. C. Wu, and K. F. Cen, “Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography,” Proc. Combust. Inst. 37, 2911–2918 (2019).

[Crossref]

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

X. C. Wu, Z. L. Xue, H. F. Zhao, L. C. Yao, L. H. Chen, C. H. Zheng, and X. Gao, “Measurement of slurry droplets by digital holographic microscopy: fundamental research,” Fuel 158, 697–704 (2015).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

S.-C. Liu, J. Li, and D. Chu, “Calculating real-time computer-generated holograms for holographic 3D displays through deep learning,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Tu4A.7.

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440.

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).

[Crossref]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).

[Crossref]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).

[Crossref]

L. C. Yao, X. C. Wu, X. D. Lin, Y. C. Wu, L. H. Chen, X. Gao, and K. F. Cen, “Measurement of burning biomass particles via high-speed digital holography,” Laser Optoelectron. Prog. 56, 68–74 (2019).

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

X. C. Wu, Z. L. Xue, H. F. Zhao, L. C. Yao, L. H. Chen, C. H. Zheng, and X. Gao, “Measurement of slurry droplets by digital holographic microscopy: fundamental research,” Fuel 158, 697–704 (2015).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

Y. Rivenson, Y. B. Zhang, H. Gnaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

Y. Wu, L. Yao, X. Wu, J. Chen, G. Grehan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel 206, 429–436 (2017).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).

[Crossref]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in International Conference on Neural Information Processing Systems (2012).

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

Y. Piao, Z. Rong, M. Zhang, Y. Zhang, and X. Ji, “Deep learning for single view focal plane reconstruction in integral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.2.

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

Y. Yang and B. S. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng. 49, 1254–1263 (2011).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in International Conference on Neural Information Processing Systems (2012).

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

A. Vedaldi and K. Lenc, “MatConvNet -- convolutional neural networks for MATLAB,” in Proceedings of the 23rd ACM International Conference on Multimedia (2015).

S.-C. Liu, J. Li, and D. Chu, “Calculating real-time computer-generated holograms for holographic 3D displays through deep learning,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Tu4A.7.

X. Lin, Y. Wu, C. Wu, L. Yao, X. Wu, L. Chen, and K. Cen, “Evolution of volatile cloud in pulverized coal combustion with high-speed digital inline holographic visualization,” Fuel 241, 199–206 (2019).

[Crossref]

Y. C. Wu, Y. Rivenson, Y. B. Zhang, Z. S. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).

[Crossref]

L. C. Yao, X. C. Wu, X. D. Lin, Y. C. Wu, L. H. Chen, X. Gao, and K. F. Cen, “Measurement of burning biomass particles via high-speed digital holography,” Laser Optoelectron. Prog. 56, 68–74 (2019).

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

S.-C. Liu, J. Li, and D. Chu, “Calculating real-time computer-generated holograms for holographic 3D displays through deep learning,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Tu4A.7.

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440.

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully convolutional neural networks for remote sensing image classification,” in Geoscience & Remote Sensing Symposium (2016).

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).

[Crossref]

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Focus prediction in digital holographic microscopy using deep convolutional neural networks,” Appl. Opt. 58, A202–A208 (2019).

[Crossref]

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Digital hologram reconstruction segmentation using a convolutional neural network,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Th3A.1.

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Detection of an object in the field of view of a digital hologram with an heuristic algorithm parameterized using a convolutional neural network,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Th3A.3.

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

X. Miao, X. Yuan, and P. Wilford, “Deep learning for compressive spectral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.3.

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Focus prediction in digital holographic microscopy using deep convolutional neural networks,” Appl. Opt. 58, A202–A208 (2019).

[Crossref]

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Detection of an object in the field of view of a digital hologram with an heuristic algorithm parameterized using a convolutional neural network,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Th3A.3.

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Digital hologram reconstruction segmentation using a convolutional neural network,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Th3A.1.

T. Nguyen, V. Bui, V. Lam, C. B. Raub, L. C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).

[Crossref]

T. Nguyen, A. Thai, P. Adwani, and G. Nehmetallah, “Autofocusing of fluorescent microscopic images through deep learning convolutional neural networks,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper W3A.32.

T. Nguyen, V. Bui, V. Lam, C. B. Raub, L. C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).

[Crossref]

T. Nguyen, A. Thai, P. Adwani, and G. Nehmetallah, “Autofocusing of fluorescent microscopic images through deep learning convolutional neural networks,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper W3A.32.

Y. C. Wu, Y. Rivenson, Y. B. Zhang, Z. S. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).

[Crossref]

Y. Rivenson, Y. B. Zhang, H. Gnaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

D.-Y. Park and J.-H. Park, “Generation of high-resolution and speckle reduced light field data from hologram using deep learning,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper W3A.33.

D.-Y. Park and J.-H. Park, “Generation of high-resolution and speckle reduced light field data from hologram using deep learning,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper W3A.33.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).

[Crossref]

Y. Piao, Z. Rong, M. Zhang, Y. Zhang, and X. Ji, “Deep learning for single view focal plane reconstruction in integral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.2.

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Focus prediction in digital holographic microscopy using deep convolutional neural networks,” Appl. Opt. 58, A202–A208 (2019).

[Crossref]

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Digital hologram reconstruction segmentation using a convolutional neural network,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Th3A.1.

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Detection of an object in the field of view of a digital hologram with an heuristic algorithm parameterized using a convolutional neural network,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Th3A.3.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).

[Crossref]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).

[Crossref]

Y. Rivenson, Y. B. Zhang, H. Gnaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

Y. C. Wu, Y. Rivenson, Y. B. Zhang, Z. S. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).

[Crossref]

Y. Piao, Z. Rong, M. Zhang, Y. Zhang, and X. Ji, “Deep learning for single view focal plane reconstruction in integral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.2.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).

[Crossref]

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).

[Crossref]

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440.

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).

[Crossref]

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).

[Crossref]

T. Shimobaba, T. Takahashi, Y. Yamamoto, Y. Endo, and T. Ito, “Digital holographic particle volume reconstruction using a deep neural network,” Appl. Opt. 58, 1900–1906 (2018).

[Crossref]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).

[Crossref]

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556 (2014).

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in International Conference on Neural Information Processing Systems (2012).

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully convolutional neural networks for remote sensing image classification,” in Geoscience & Remote Sensing Symposium (2016).

Y. Rivenson, Y. B. Zhang, H. Gnaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

T. Nguyen, A. Thai, P. Adwani, and G. Nehmetallah, “Autofocusing of fluorescent microscopic images through deep learning convolutional neural networks,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper W3A.32.

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

A. Vedaldi and K. Lenc, “MatConvNet -- convolutional neural networks for MATLAB,” in Proceedings of the 23rd ACM International Conference on Multimedia (2015).

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

X. Miao, X. Yuan, and P. Wilford, “Deep learning for compressive spectral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.3.

X. Lin, Y. Wu, C. Wu, L. Yao, X. Wu, L. Chen, and K. Cen, “Evolution of volatile cloud in pulverized coal combustion with high-speed digital inline holographic visualization,” Fuel 241, 199–206 (2019).

[Crossref]

L. C. Yao, C. Y. Wu, Y. C. Wu, L. H. Chen, J. Chen, X. C. Wu, and K. F. Cen, “Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography,” Proc. Combust. Inst. 37, 2911–2918 (2019).

[Crossref]

X. Lin, Y. Wu, C. Wu, L. Yao, X. Wu, L. Chen, and K. Cen, “Evolution of volatile cloud in pulverized coal combustion with high-speed digital inline holographic visualization,” Fuel 241, 199–206 (2019).

[Crossref]

Y. Wu, L. Yao, X. Wu, J. Chen, G. Grehan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel 206, 429–436 (2017).

[Crossref]

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

L. C. Yao, X. C. Wu, X. D. Lin, Y. C. Wu, L. H. Chen, X. Gao, and K. F. Cen, “Measurement of burning biomass particles via high-speed digital holography,” Laser Optoelectron. Prog. 56, 68–74 (2019).

L. C. Yao, C. Y. Wu, Y. C. Wu, L. H. Chen, J. Chen, X. C. Wu, and K. F. Cen, “Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography,” Proc. Combust. Inst. 37, 2911–2918 (2019).

[Crossref]

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

X. C. Wu, Z. L. Xue, H. F. Zhao, L. C. Yao, L. H. Chen, C. H. Zheng, and X. Gao, “Measurement of slurry droplets by digital holographic microscopy: fundamental research,” Fuel 158, 697–704 (2015).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

X. Lin, Y. Wu, C. Wu, L. Yao, X. Wu, L. Chen, and K. Cen, “Evolution of volatile cloud in pulverized coal combustion with high-speed digital inline holographic visualization,” Fuel 241, 199–206 (2019).

[Crossref]

Y. Wu, L. Yao, X. Wu, J. Chen, G. Grehan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel 206, 429–436 (2017).

[Crossref]

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

L. C. Yao, X. C. Wu, X. D. Lin, Y. C. Wu, L. H. Chen, X. Gao, and K. F. Cen, “Measurement of burning biomass particles via high-speed digital holography,” Laser Optoelectron. Prog. 56, 68–74 (2019).

L. C. Yao, C. Y. Wu, Y. C. Wu, L. H. Chen, J. Chen, X. C. Wu, and K. F. Cen, “Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography,” Proc. Combust. Inst. 37, 2911–2918 (2019).

[Crossref]

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

Y. C. Wu, Y. Rivenson, Y. B. Zhang, Z. S. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

X. C. Wu, Z. L. Xue, H. F. Zhao, L. C. Yao, L. H. Chen, C. H. Zheng, and X. Gao, “Measurement of slurry droplets by digital holographic microscopy: fundamental research,” Fuel 158, 697–704 (2015).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

Y. Yang and B. S. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng. 49, 1254–1263 (2011).

[Crossref]

X. Lin, Y. Wu, C. Wu, L. Yao, X. Wu, L. Chen, and K. Cen, “Evolution of volatile cloud in pulverized coal combustion with high-speed digital inline holographic visualization,” Fuel 241, 199–206 (2019).

[Crossref]

Y. Wu, L. Yao, X. Wu, J. Chen, G. Grehan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel 206, 429–436 (2017).

[Crossref]

L. C. Yao, C. Y. Wu, Y. C. Wu, L. H. Chen, J. Chen, X. C. Wu, and K. F. Cen, “Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography,” Proc. Combust. Inst. 37, 2911–2918 (2019).

[Crossref]

L. C. Yao, X. C. Wu, X. D. Lin, Y. C. Wu, L. H. Chen, X. Gao, and K. F. Cen, “Measurement of burning biomass particles via high-speed digital holography,” Laser Optoelectron. Prog. 56, 68–74 (2019).

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

X. C. Wu, Z. L. Xue, H. F. Zhao, L. C. Yao, L. H. Chen, C. H. Zheng, and X. Gao, “Measurement of slurry droplets by digital holographic microscopy: fundamental research,” Fuel 158, 697–704 (2015).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

X. Miao, X. Yuan, and P. Wilford, “Deep learning for compressive spectral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.3.

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

Y. Piao, Z. Rong, M. Zhang, Y. Zhang, and X. Ji, “Deep learning for single view focal plane reconstruction in integral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.2.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.

Y. Piao, Z. Rong, M. Zhang, Y. Zhang, and X. Ji, “Deep learning for single view focal plane reconstruction in integral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.2.

Y. Rivenson, Y. B. Zhang, H. Gnaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

Y. C. Wu, Y. Rivenson, Y. B. Zhang, Z. S. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).

[Crossref]

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

X. C. Wu, Z. L. Xue, H. F. Zhao, L. C. Yao, L. H. Chen, C. H. Zheng, and X. Gao, “Measurement of slurry droplets by digital holographic microscopy: fundamental research,” Fuel 158, 697–704 (2015).

[Crossref]

X. C. Wu, Z. L. Xue, H. F. Zhao, L. C. Yao, L. H. Chen, C. H. Zheng, and X. Gao, “Measurement of slurry droplets by digital holographic microscopy: fundamental research,” Fuel 158, 697–704 (2015).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556 (2014).

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).

[Crossref]

Y. S. Choi and S. J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48, 2983–2990 (2009).

[Crossref]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).

[Crossref]

Y. C. Wu, X. C. Wu, J. Yang, Z. H. Wang, X. Gao, B. W. Zhou, L. H. Chen, K. Z. Qiu, G. Grehan, and K. F. Cen, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014).

[Crossref]

L. C. Yao, X. C. Wu, Y. C. Wu, J. Yang, X. Gao, L. H. Chen, G. Grehan, and K. F. Cen, “Characterization of atomization and breakup of acoustically levitated drops with digital holography,” Appl. Opt. 54, A23–A31 (2015).

[Crossref]

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Focus prediction in digital holographic microscopy using deep convolutional neural networks,” Appl. Opt. 58, A202–A208 (2019).

[Crossref]

T. Shimobaba, T. Takahashi, Y. Yamamoto, Y. Endo, and T. Ito, “Digital holographic particle volume reconstruction using a deep neural network,” Appl. Opt. 58, 1900–1906 (2018).

[Crossref]

X. C. Wu, L. C. Yao, Y. C. Wu, X. D. Lin, L. H. Chen, J. Chen, X. Gao, and K. F. Cen, “In-situ characterization of coal particle combustion via long working distance digital in-line holography,” Energy Fuel 32, 8277–8286 (2018).

[Crossref]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).

[Crossref]

X. Lin, Y. Wu, C. Wu, L. Yao, X. Wu, L. Chen, and K. Cen, “Evolution of volatile cloud in pulverized coal combustion with high-speed digital inline holographic visualization,” Fuel 241, 199–206 (2019).

[Crossref]

Y. Wu, L. Yao, X. Wu, J. Chen, G. Grehan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel 206, 429–436 (2017).

[Crossref]

X. C. Wu, Z. L. Xue, H. F. Zhao, L. C. Yao, L. H. Chen, C. H. Zheng, and X. Gao, “Measurement of slurry droplets by digital holographic microscopy: fundamental research,” Fuel 158, 697–704 (2015).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

L. C. Yao, X. C. Wu, X. D. Lin, Y. C. Wu, L. H. Chen, X. Gao, and K. F. Cen, “Measurement of burning biomass particles via high-speed digital holography,” Laser Optoelectron. Prog. 56, 68–74 (2019).

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).

[Crossref]

Y. Rivenson, Y. B. Zhang, H. Gnaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

[Crossref]

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).

[Crossref]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).

[Crossref]

T. Nguyen, V. Bui, V. Lam, C. B. Raub, L. C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).

[Crossref]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).

[Crossref]

M. D. Hannel, A. Abdulali, M. O’Brien, and D. G. Grier, “Machine-learning techniques for fast and accurate feature localization in holograms of colloidal particles,” Opt. Express 26, 15221–15231 (2018).

[Crossref]

G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, and N. Xie, “Fast phase retrieval in off-axis digital holographic microscopy through deep learning,” Opt. Express 26, 19388–19405 (2018).

[Crossref]

H. Wang, M. Lyu, and G. Situ, “eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).

[Crossref]

Z. Luo, A. Yurt, R. Stahl, A. Lambrechts, V. Reumers, D. Braeken, and L. Lagae, “Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks,” Opt. Express 27, 13581–13595 (2019).

[Crossref]

K. Wang, Y. Li, Q. Kemao, J. Di, and J. Zhao, “One-step robust deep learning phase unwrapping,” Opt. Express 27, 15100–15115 (2019).

[Crossref]

Y. Yang and B. S. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng. 49, 1254–1263 (2011).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).

[Crossref]

E. Y. Lam, Z. Ren, and Z. Xu, “Learning-based nonparametric autofocusing for digital holography,” Optica 5, 337–344 (2018).

[Crossref]

Y. C. Wu, Y. Rivenson, Y. B. Zhang, Z. S. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).

[Crossref]

L. C. Yao, C. Y. Wu, Y. C. Wu, L. H. Chen, J. Chen, X. C. Wu, and K. F. Cen, “Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography,” Proc. Combust. Inst. 37, 2911–2918 (2019).

[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

[Crossref]

S.-J. Kim, C. Wang, B. Zhao, H. Im, J. Min, H. J. Choi, J. Tadros, N. R. Choi, C. M. Castro, R. Weissleder, H. Lee, and K. Lee, “Deep transfer learning-based hologram classification for molecular diagnostics,” Sci. Rep. 8, 17003 (2018).

[Crossref]

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully convolutional neural networks for remote sensing image classification,” in Geoscience & Remote Sensing Symposium (2016).

A. Vedaldi and K. Lenc, “MatConvNet -- convolutional neural networks for MATLAB,” in Proceedings of the 23rd ACM International Conference on Multimedia (2015).

S. Ehrhardt and A. Vedaldi, “A MatConvNet-based implementation of the fully-convolutional networks for image segmentation,” Andrea Vedaldi, 2016, https://github.com/vlfeat/matconvnet-fcn .

A. Vedaldi and K. Lenc, “Pretrained models: ImageNet ILSVRC classification,” 2015, http://www.vlfeat.org/matconvnet/pretrained/#imagenet-ilsvrc-classification .

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Digital hologram reconstruction segmentation using a convolutional neural network,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Th3A.1.

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Detection of an object in the field of view of a digital hologram with an heuristic algorithm parameterized using a convolutional neural network,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Th3A.3.

T. Nguyen, A. Thai, P. Adwani, and G. Nehmetallah, “Autofocusing of fluorescent microscopic images through deep learning convolutional neural networks,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper W3A.32.

Y. Piao, Z. Rong, M. Zhang, Y. Zhang, and X. Ji, “Deep learning for single view focal plane reconstruction in integral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.2.

D.-Y. Park and J.-H. Park, “Generation of high-resolution and speckle reduced light field data from hologram using deep learning,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper W3A.33.

S.-C. Liu, J. Li, and D. Chu, “Calculating real-time computer-generated holograms for holographic 3D displays through deep learning,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper Tu4A.7.

X. Miao, X. Yuan, and P. Wilford, “Deep learning for compressive spectral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2019), paper M3B.3.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in International Conference on Neural Information Processing Systems (2012).

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556 (2014).

C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440.