Abstract

The opportunities and special features of using a multi-purpose digital holographic camera (DHC) adapted for particle research for various diagnostic tasks, such as plankton investigation in its habitat, optical glass diagnostics, and study of defects in single crystals, are investigated. Experimental research with the DHC carried out and described in this paper has demonstrated the universality of the DHC measurement technology and its effectiveness for solving a number of diagnostic tasks in the study of small particles of different natures in various media.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis

Frank Dubois, Natacha Callens, Catherine Yourassowsky, Mauricio Hoyos, Pascal Kurowski, and Olivier Monnom
Appl. Opt. 45(5) 864-871 (2006)

Inverse problem approach in particle digital holography: out-of-field particle detection made possible

Ferréol Soulez, Loïc Denis, Éric Thiébaut, Corinne Fournier, and Charles Goepfert
J. Opt. Soc. Am. A 24(12) 3708-3716 (2007)

Phase retrieval method for digital holography with two cameras in particle measurement

Yohsuke Tanaka, Shunsuke Tani, and Shigeru Murata
Opt. Express 24(22) 25233-25241 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Fugal and R. A. Shaw, “Cloud particle size distributions measured with an airborne digital in-line holographic instrument,” Atmos. Meas. Technol. 2, 259–271 (2009).
    [Crossref]
  2. V. V. Dyomin, V. A. Donchenko, and L. K. Chistyakova, “Holographic studies of aerosol microstructure subject to nanosecond optical pulses,” Atmos. Ocean. Opt. 1, 57–63 (1988).
  3. E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).
    [Crossref]
  4. P. R. Hobson and J. Watson, “The principles and practice of holographic recording of plankton,” J. Opt. A 4, S34–S49 (2002).
    [Crossref]
  5. V. Kumar, G. S. Khan, and C. Shakher, “Phase contrast imaging of red blood cells using digital holographic interferometric microscope,” Proc. SPIE 10453, 104532T (2017).
    [Crossref]
  6. V. V. Dyomin, A. S. Olshukov, E. Y. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Ocean. Opt. 21, 951–956 (2008).
  7. V. V. Dyomin, A. S. Olshukov, and E. V. Dzyuba, “Digital holographic video for studies of plankton dynamics,” Russ. Phys. J. 53, 857–866 (2011).
    [Crossref]
  8. U. Schnars and W. Jueptner, Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  9. L. Yaroslavsky, Digital Holography and Digital Image Processing Principles, Methods, Algorithms (Academic, 2004).
  10. V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
    [Crossref]
  11. V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Physical foundations of the method for determining geometric characteristics and particle recognition in digital holography,” Russ. Phys. J. 60, 174–176 (2017).
  12. V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Russ. Phys. J. 58, 1467–1474 (2016).
    [Crossref]
  13. V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quantum Electron. 57, 533–542 (2015).
    [Crossref]
  14. V. V. Dyomin and A. S. Olshukov, “Digital holographic video for studying biological particles,” J. Opt. Technol. 79, 344–347 (2012).
    [Crossref]
  15. J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
    [Crossref]
  16. J. Katz, P. L. Donaghay, J. Zhang, S. King, and K. Russell, “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep-Sea Res. 46, 1455–1481 (1999).
    [Crossref]
  17. R. Collier, C. Burckhardt, and L. Lin, Optical Holography (Academic, 1971).
  18. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [Crossref]
  19. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
    [Crossref]
  20. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
    [Crossref]
  21. V. V. Dyomin and A. S. Olshukov, “Improvement of the quality of reconstructed holographic images by extrapolation of digital holograms,” Russ. Phys. J. 58, 1413–1419 (2016).
    [Crossref]
  22. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and R. S. Starikov, “Shot noise vs fixed pattern noise: What has higher effect on digital hologram quality?” Proc. SPIE 10834, 108340D (2018).
    [Crossref]
  23. V. V. Dyomin and D. V. Kamenev, “Two-dimensional representation of a digital holographic image of the volume of a medium with particles as a method of depicting and processing information concerning the particles,” J. Opt. Technol. 80, 450–456 (2013).
    [Crossref]
  24. V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Fast recognition of marine particles in underwater digital holography,” Proc. SPIE 10466, 1046627 (2017).
    [Crossref]
  25. V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Marine particles investigation by underwater digital holography,” Proc. SPIE 10677, 1067725 (2018).
    [Crossref]
  26. T. K. Parmar, D. Rawtani, and Y. K. Agrawal, “Bioindicators: the natural indicator of environmental pollution,” Front. Life Sci. 9, 110–118 (2016).
    [Crossref]
  27. D. E. Levashov and A. I. Zhavoronkov, “Instrumental assessment of concentration and sizes of mezoplankton particles in situ,” in Oceanology International (1994), Vol. 2, p. 15.
  28. V. Dyomin, I. Polovtsev, A. Olshukov, and A. Davydova, “DHC sensor—a tool for monitoring the plankton biodiversity in a habitat,” in OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO) (IEEE, 2018), pp. 1–5.
  29. D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of OCEANS MTS/IEEE (IEEE, 2005), pp. 1–7.
  30. S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
    [Crossref]
  31. V. V. Dyomin, I. G. Polovtsev, D. V. Kamenev, A. S. Kozlova, and A. L. Olenin, “Plankton investigation in the Kara Sea by a submersible digital holocamera,” in OCEANS, Aberdeen, Scotland (IEEE, 2017), pp. 1–4.
  32. V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
    [Crossref]
  33. G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
    [Crossref]
  34. Managing Health & Safety in Swimming Pools (HSG 179) (Health & Safety Executive (HSE), 2003).
  35. “Water quality–determination of turbidity–Part 1: Quantitative methods,” .
  36. “Optics and photonics–preparation of drawings for optical elements and systems,” .
  37. V. V. Dyomin, I. G. Polovtsev, and D. V. Kamenev, “Quality control of ZnGeP2 single crystals using optical methods,” Russ. Phys. J. 58, 1479–1481 (2016).
    [Crossref]
  38. V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
    [Crossref]
  39. A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
    [Crossref]
  40. J. R. Carruthers, “Origins of convective temperature oscillations in crystal growth melts,” J. Cryst. Growth 32, 13–26 (1976).
    [Crossref]
  41. “Lasers and laser-related equipment–Determination of laser-induced damage threshold of optical surfaces–Part 2: S-on-1 test,” .
  42. P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” in Quantum Electronics: Proceedings of the Third International Congress, P. Grivet and N. Bloembergen, eds. (Columbia University, 1964), p. 1559.
  43. A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
    [Crossref]

2019 (1)

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
[Crossref]

2018 (4)

V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Marine particles investigation by underwater digital holography,” Proc. SPIE 10677, 1067725 (2018).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and R. S. Starikov, “Shot noise vs fixed pattern noise: What has higher effect on digital hologram quality?” Proc. SPIE 10834, 108340D (2018).
[Crossref]

2017 (3)

V. Kumar, G. S. Khan, and C. Shakher, “Phase contrast imaging of red blood cells using digital holographic interferometric microscope,” Proc. SPIE 10453, 104532T (2017).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Physical foundations of the method for determining geometric characteristics and particle recognition in digital holography,” Russ. Phys. J. 60, 174–176 (2017).

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Fast recognition of marine particles in underwater digital holography,” Proc. SPIE 10466, 1046627 (2017).
[Crossref]

2016 (5)

V. V. Dyomin and A. S. Olshukov, “Improvement of the quality of reconstructed holographic images by extrapolation of digital holograms,” Russ. Phys. J. 58, 1413–1419 (2016).
[Crossref]

T. K. Parmar, D. Rawtani, and Y. K. Agrawal, “Bioindicators: the natural indicator of environmental pollution,” Front. Life Sci. 9, 110–118 (2016).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and D. V. Kamenev, “Quality control of ZnGeP2 single crystals using optical methods,” Russ. Phys. J. 58, 1479–1481 (2016).
[Crossref]

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Russ. Phys. J. 58, 1467–1474 (2016).
[Crossref]

2015 (1)

V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quantum Electron. 57, 533–542 (2015).
[Crossref]

2013 (1)

2012 (2)

V. V. Dyomin and A. S. Olshukov, “Digital holographic video for studying biological particles,” J. Opt. Technol. 79, 344–347 (2012).
[Crossref]

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

2011 (1)

V. V. Dyomin, A. S. Olshukov, and E. V. Dzyuba, “Digital holographic video for studies of plankton dynamics,” Russ. Phys. J. 53, 857–866 (2011).
[Crossref]

2010 (1)

G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
[Crossref]

2009 (2)

A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
[Crossref]

J. P. Fugal and R. A. Shaw, “Cloud particle size distributions measured with an airborne digital in-line holographic instrument,” Atmos. Meas. Technol. 2, 259–271 (2009).
[Crossref]

2008 (2)

V. V. Dyomin, A. S. Olshukov, E. Y. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Ocean. Opt. 21, 951–956 (2008).

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[Crossref]

2004 (1)

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

2003 (1)

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).
[Crossref]

2002 (2)

P. R. Hobson and J. Watson, “The principles and practice of holographic recording of plankton,” J. Opt. A 4, S34–S49 (2002).
[Crossref]

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

2001 (1)

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

1999 (1)

J. Katz, P. L. Donaghay, J. Zhang, S. King, and K. Russell, “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep-Sea Res. 46, 1455–1481 (1999).
[Crossref]

1988 (1)

V. V. Dyomin, V. A. Donchenko, and L. K. Chistyakova, “Holographic studies of aerosol microstructure subject to nanosecond optical pulses,” Atmos. Ocean. Opt. 1, 57–63 (1988).

1976 (1)

J. R. Carruthers, “Origins of convective temperature oscillations in crystal growth melts,” J. Cryst. Growth 32, 13–26 (1976).
[Crossref]

Agrawal, Y. K.

T. K. Parmar, D. Rawtani, and Y. K. Agrawal, “Bioindicators: the natural indicator of environmental pollution,” Front. Life Sci. 9, 110–118 (2016).
[Crossref]

Alexander, S.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Burckhardt, C.

R. Collier, C. Burckhardt, and L. Lin, Optical Holography (Academic, 1971).

Carruthers, J. R.

J. R. Carruthers, “Origins of convective temperature oscillations in crystal growth melts,” J. Cryst. Growth 32, 13–26 (1976).
[Crossref]

Cheremkhin, P. A.

P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and R. S. Starikov, “Shot noise vs fixed pattern noise: What has higher effect on digital hologram quality?” Proc. SPIE 10834, 108340D (2018).
[Crossref]

Chistyakova, L. K.

V. V. Dyomin, V. A. Donchenko, and L. K. Chistyakova, “Holographic studies of aerosol microstructure subject to nanosecond optical pulses,” Atmos. Ocean. Opt. 1, 57–63 (1988).

Collier, R.

R. Collier, C. Burckhardt, and L. Lin, Optical Holography (Academic, 1971).

Coppola, G.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Craig, G.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Czerski, H.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Davydova, A.

V. Dyomin, I. Polovtsev, A. Olshukov, and A. Davydova, “DHC sensor—a tool for monitoring the plankton biodiversity in a habitat,” in OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO) (IEEE, 2018), pp. 1–5.

Davydova, A. Y.

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Marine particles investigation by underwater digital holography,” Proc. SPIE 10677, 1067725 (2018).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Physical foundations of the method for determining geometric characteristics and particle recognition in digital holography,” Russ. Phys. J. 60, 174–176 (2017).

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Fast recognition of marine particles in underwater digital holography,” Proc. SPIE 10466, 1046627 (2017).
[Crossref]

De Nicola, S.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Denis, L.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[Crossref]

Donaghay, P.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Donaghay, P. L.

J. Katz, P. L. Donaghay, J. Zhang, S. King, and K. Russell, “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep-Sea Res. 46, 1455–1481 (1999).
[Crossref]

Donchenko, V. A.

V. V. Dyomin, V. A. Donchenko, and L. K. Chistyakova, “Holographic studies of aerosol microstructure subject to nanosecond optical pulses,” Atmos. Ocean. Opt. 1, 57–63 (1988).

Ducottet, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[Crossref]

Dyomin, V.

V. Dyomin, I. Polovtsev, A. Olshukov, and A. Davydova, “DHC sensor—a tool for monitoring the plankton biodiversity in a habitat,” in OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO) (IEEE, 2018), pp. 1–5.

Dyomin, V. V.

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
[Crossref]

V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Marine particles investigation by underwater digital holography,” Proc. SPIE 10677, 1067725 (2018).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Physical foundations of the method for determining geometric characteristics and particle recognition in digital holography,” Russ. Phys. J. 60, 174–176 (2017).

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Fast recognition of marine particles in underwater digital holography,” Proc. SPIE 10466, 1046627 (2017).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and D. V. Kamenev, “Quality control of ZnGeP2 single crystals using optical methods,” Russ. Phys. J. 58, 1479–1481 (2016).
[Crossref]

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Russ. Phys. J. 58, 1467–1474 (2016).
[Crossref]

V. V. Dyomin and A. S. Olshukov, “Improvement of the quality of reconstructed holographic images by extrapolation of digital holograms,” Russ. Phys. J. 58, 1413–1419 (2016).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quantum Electron. 57, 533–542 (2015).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Two-dimensional representation of a digital holographic image of the volume of a medium with particles as a method of depicting and processing information concerning the particles,” J. Opt. Technol. 80, 450–456 (2013).
[Crossref]

V. V. Dyomin and A. S. Olshukov, “Digital holographic video for studying biological particles,” J. Opt. Technol. 79, 344–347 (2012).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and E. V. Dzyuba, “Digital holographic video for studies of plankton dynamics,” Russ. Phys. J. 53, 857–866 (2011).
[Crossref]

V. V. Dyomin, A. S. Olshukov, E. Y. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Ocean. Opt. 21, 951–956 (2008).

V. V. Dyomin, V. A. Donchenko, and L. K. Chistyakova, “Holographic studies of aerosol microstructure subject to nanosecond optical pulses,” Atmos. Ocean. Opt. 1, 57–63 (1988).

V. V. Dyomin, I. G. Polovtsev, D. V. Kamenev, A. S. Kozlova, and A. L. Olenin, “Plankton investigation in the Kara Sea by a submersible digital holocamera,” in OCEANS, Aberdeen, Scotland (IEEE, 2017), pp. 1–4.

Dzyuba, E. V.

V. V. Dyomin, A. S. Olshukov, and E. V. Dzyuba, “Digital holographic video for studies of plankton dynamics,” Russ. Phys. J. 53, 857–866 (2011).
[Crossref]

Dzyuba, I. V.

A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
[Crossref]

Evtikhiev, N. N.

P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and R. S. Starikov, “Shot noise vs fixed pattern noise: What has higher effect on digital hologram quality?” Proc. SPIE 10834, 108340D (2018).
[Crossref]

Ferraro, P.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Finizio, A.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Fournel, T.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[Crossref]

Fournier, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[Crossref]

Fugal, J. P.

J. P. Fugal and R. A. Shaw, “Cloud particle size distributions measured with an airborne digital in-line holographic instrument,” Atmos. Meas. Technol. 2, 259–271 (2009).
[Crossref]

Galtier, P. R. J.

A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
[Crossref]

Graham, G. W.

G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
[Crossref]

Gribenyukov, A. I.

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
[Crossref]

Grilli, S.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Hendry, D. C.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Hobson, P. R.

P. R. Hobson and J. Watson, “The principles and practice of holographic recording of plankton,” J. Opt. A 4, S34–S49 (2002).
[Crossref]

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Hong, J.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Jueptner, W.

U. Schnars and W. Jueptner, Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Kamenev, D. V.

V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
[Crossref]

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and D. V. Kamenev, “Quality control of ZnGeP2 single crystals using optical methods,” Russ. Phys. J. 58, 1479–1481 (2016).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Russ. Phys. J. 58, 1467–1474 (2016).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quantum Electron. 57, 533–542 (2015).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Two-dimensional representation of a digital holographic image of the volume of a medium with particles as a method of depicting and processing information concerning the particles,” J. Opt. Technol. 80, 450–456 (2013).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, D. V. Kamenev, A. S. Kozlova, and A. L. Olenin, “Plankton investigation in the Kara Sea by a submersible digital holocamera,” in OCEANS, Aberdeen, Scotland (IEEE, 2017), pp. 1–4.

Katz, J.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).
[Crossref]

J. Katz, P. L. Donaghay, J. Zhang, S. King, and K. Russell, “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep-Sea Res. 46, 1455–1481 (1999).
[Crossref]

D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of OCEANS MTS/IEEE (IEEE, 2005), pp. 1–7.

Khan, G. S.

V. Kumar, G. S. Khan, and C. Shakher, “Phase contrast imaging of red blood cells using digital holographic interferometric microscope,” Proc. SPIE 10453, 104532T (2017).
[Crossref]

King, S.

J. Katz, P. L. Donaghay, J. Zhang, S. King, and K. Russell, “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep-Sea Res. 46, 1455–1481 (1999).
[Crossref]

King, S. R.

D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of OCEANS MTS/IEEE (IEEE, 2005), pp. 1–7.

Kozlova, A. S.

V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, D. V. Kamenev, A. S. Kozlova, and A. L. Olenin, “Plankton investigation in the Kara Sea by a submersible digital holocamera,” in OCEANS, Aberdeen, Scotland (IEEE, 2017), pp. 1–4.

Krasnov, V. V.

P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and R. S. Starikov, “Shot noise vs fixed pattern noise: What has higher effect on digital hologram quality?” Proc. SPIE 10834, 108340D (2018).
[Crossref]

Kumar, V.

V. Kumar, G. S. Khan, and C. Shakher, “Phase contrast imaging of red blood cells using digital holographic interferometric microscope,” Proc. SPIE 10453, 104532T (2017).
[Crossref]

Lampitt, R. S.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Levashov, D. E.

D. E. Levashov and A. I. Zhavoronkov, “Instrumental assessment of concentration and sizes of mezoplankton particles in situ,” in Oceanology International (1994), Vol. 2, p. 15.

Lin, L.

R. Collier, C. Burckhardt, and L. Lin, Optical Holography (Academic, 1971).

Maker, P. D.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” in Quantum Electronics: Proceedings of the Third International Congress, P. Grivet and N. Bloembergen, eds. (Columbia University, 1964), p. 1559.

Malkiel, E.

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).
[Crossref]

D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of OCEANS MTS/IEEE (IEEE, 2005), pp. 1–7.

Marteau, J. M.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

McFarland, M.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Melnik, N. G.

V. V. Dyomin, A. S. Olshukov, E. Y. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Ocean. Opt. 21, 951–956 (2008).

Nareid, H.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Naumova, E. Y.

V. V. Dyomin, A. S. Olshukov, E. Y. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Ocean. Opt. 21, 951–956 (2008).

Nayak, A. R.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Nimmo Smith, W. A. M.

G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
[Crossref]

Okunev, A. O.

A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
[Crossref]

Olenin, A. L.

V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, D. V. Kamenev, A. S. Kozlova, and A. L. Olenin, “Plankton investigation in the Kara Sea by a submersible digital holocamera,” in OCEANS, Aberdeen, Scotland (IEEE, 2017), pp. 1–4.

Olshukov, A.

V. Dyomin, I. Polovtsev, A. Olshukov, and A. Davydova, “DHC sensor—a tool for monitoring the plankton biodiversity in a habitat,” in OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO) (IEEE, 2018), pp. 1–5.

Olshukov, A. S.

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
[Crossref]

V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

V. V. Dyomin and A. S. Olshukov, “Improvement of the quality of reconstructed holographic images by extrapolation of digital holograms,” Russ. Phys. J. 58, 1413–1419 (2016).
[Crossref]

V. V. Dyomin and A. S. Olshukov, “Digital holographic video for studying biological particles,” J. Opt. Technol. 79, 344–347 (2012).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and E. V. Dzyuba, “Digital holographic video for studies of plankton dynamics,” Russ. Phys. J. 53, 857–866 (2011).
[Crossref]

V. V. Dyomin, A. S. Olshukov, E. Y. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Ocean. Opt. 21, 951–956 (2008).

Parmar, T. K.

T. K. Parmar, D. Rawtani, and Y. K. Agrawal, “Bioindicators: the natural indicator of environmental pollution,” Front. Life Sci. 9, 110–118 (2016).
[Crossref]

Pfitsch, D. W.

D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of OCEANS MTS/IEEE (IEEE, 2005), pp. 1–7.

Player, M. A.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Podzyvalov, S. N.

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
[Crossref]

Polovcev, I. G.

V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
[Crossref]

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

Polovtsev, I.

V. Dyomin, I. Polovtsev, A. Olshukov, and A. Davydova, “DHC sensor—a tool for monitoring the plankton biodiversity in a habitat,” in OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO) (IEEE, 2018), pp. 1–5.

Polovtsev, I. G.

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Marine particles investigation by underwater digital holography,” Proc. SPIE 10677, 1067725 (2018).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Fast recognition of marine particles in underwater digital holography,” Proc. SPIE 10466, 1046627 (2017).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Physical foundations of the method for determining geometric characteristics and particle recognition in digital holography,” Russ. Phys. J. 60, 174–176 (2017).

V. V. Dyomin, I. G. Polovtsev, and D. V. Kamenev, “Quality control of ZnGeP2 single crystals using optical methods,” Russ. Phys. J. 58, 1479–1481 (2016).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, D. V. Kamenev, A. S. Kozlova, and A. L. Olenin, “Plankton investigation in the Kara Sea by a submersible digital holocamera,” in OCEANS, Aberdeen, Scotland (IEEE, 2017), pp. 1–4.

Rawtani, D.

T. K. Parmar, D. Rawtani, and Y. K. Agrawal, “Bioindicators: the natural indicator of environmental pollution,” Front. Life Sci. 9, 110–118 (2016).
[Crossref]

Rines, J.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Ronzhes, Y.

D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of OCEANS MTS/IEEE (IEEE, 2005), pp. 1–7.

Russell, K.

J. Katz, P. L. Donaghay, J. Zhang, S. King, and K. Russell, “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep-Sea Res. 46, 1455–1481 (1999).
[Crossref]

Said Hassany, S. A.

A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
[Crossref]

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” in Quantum Electronics: Proceedings of the Third International Congress, P. Grivet and N. Bloembergen, eds. (Columbia University, 1964), p. 1559.

Saw, K.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Schnars, U.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

U. Schnars and W. Jueptner, Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Shakher, C.

V. Kumar, G. S. Khan, and C. Shakher, “Phase contrast imaging of red blood cells using digital holographic interferometric microscope,” Proc. SPIE 10453, 104532T (2017).
[Crossref]

Shaw, R. A.

J. P. Fugal and R. A. Shaw, “Cloud particle size distributions measured with an airborne digital in-line holographic instrument,” Atmos. Meas. Technol. 2, 259–271 (2009).
[Crossref]

Sheng, J.

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).
[Crossref]

D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of OCEANS MTS/IEEE (IEEE, 2005), pp. 1–7.

Starikov, R. S.

P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and R. S. Starikov, “Shot noise vs fixed pattern noise: What has higher effect on digital hologram quality?” Proc. SPIE 10834, 108340D (2018).
[Crossref]

Strickler, J. R.

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).
[Crossref]

Sullivan, J.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Talapatra, S.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Terhune, R. W.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” in Quantum Electronics: Proceedings of the Third International Congress, P. Grivet and N. Bloembergen, eds. (Columbia University, 1964), p. 1559.

Tipping, K.

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Trukhanov, E. M.

A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
[Crossref]

Twardowski, M.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Verozubova, G. A.

A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
[Crossref]

Watson, J.

P. R. Hobson and J. Watson, “The principles and practice of holographic recording of plankton,” J. Opt. A 4, S34–S49 (2002).
[Crossref]

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

Yaroslavsky, L.

L. Yaroslavsky, Digital Holography and Digital Image Processing Principles, Methods, Algorithms (Academic, 2004).

Yudin, N. N.

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
[Crossref]

Zhang, C.

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

Zhang, J.

J. Katz, P. L. Donaghay, J. Zhang, S. King, and K. Russell, “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep-Sea Res. 46, 1455–1481 (1999).
[Crossref]

Zhavoronkov, A. I.

D. E. Levashov and A. I. Zhavoronkov, “Instrumental assessment of concentration and sizes of mezoplankton particles in situ,” in Oceanology International (1994), Vol. 2, p. 15.

Atmos. Meas. Technol. (1)

J. P. Fugal and R. A. Shaw, “Cloud particle size distributions measured with an airborne digital in-line holographic instrument,” Atmos. Meas. Technol. 2, 259–271 (2009).
[Crossref]

Atmos. Ocean. Opt. (2)

V. V. Dyomin, V. A. Donchenko, and L. K. Chistyakova, “Holographic studies of aerosol microstructure subject to nanosecond optical pulses,” Atmos. Ocean. Opt. 1, 57–63 (1988).

V. V. Dyomin, A. S. Olshukov, E. Y. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Ocean. Opt. 21, 951–956 (2008).

Deep-Sea Res. (1)

J. Katz, P. L. Donaghay, J. Zhang, S. King, and K. Russell, “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep-Sea Res. 46, 1455–1481 (1999).
[Crossref]

Front. Life Sci. (1)

T. K. Parmar, D. Rawtani, and Y. K. Agrawal, “Bioindicators: the natural indicator of environmental pollution,” Front. Life Sci. 9, 110–118 (2016).
[Crossref]

J. Appl. Crystallogr. (1)

A. O. Okunev, G. A. Verozubova, E. M. Trukhanov, I. V. Dzyuba, P. R. J. Galtier, and S. A. Said Hassany, “Study of structural defects in ZnGeP2 crystals by X-ray topography based on the Borrman effect,” J. Appl. Crystallogr. 42, 994–998 (2009).
[Crossref]

J. Cryst. Growth (1)

J. R. Carruthers, “Origins of convective temperature oscillations in crystal growth melts,” J. Cryst. Growth 32, 13–26 (1976).
[Crossref]

J. Exp. Biol. (1)

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).
[Crossref]

J. Opt. A (1)

P. R. Hobson and J. Watson, “The principles and practice of holographic recording of plankton,” J. Opt. A 4, S34–S49 (2002).
[Crossref]

J. Opt. Technol. (2)

J. Phys. Conf. Ser. (1)

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

Limnol. Oceanogr. Methods (1)

G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
[Crossref]

Meas. Sci. Technol. (4)

J. Watson, S. Alexander, G. Craig, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Nareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9–L15 (2001).
[Crossref]

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[Crossref]

Oceanology (1)

V. V. Dyomin, A. L. Olenin, I. G. Polovcev, D. V. Kamenev, A. S. Kozlova, and A. S. Olshukov, “Marine tests of a digital holographic module using a measuring technological platform,” Oceanology 58, 749–759 (2018).
[Crossref]

Proc. SPIE (6)

S. Talapatra, J. Sullivan, J. Katz, M. Twardowski, H. Czerski, P. Donaghay, J. Hong, J. Rines, M. McFarland, A. R. Nayak, and C. Zhang, “Application of in-situ digital holography in the study of particles, organisms and bubbles within their natural environment,” Proc. SPIE 8372, 837205 (2012).
[Crossref]

P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and R. S. Starikov, “Shot noise vs fixed pattern noise: What has higher effect on digital hologram quality?” Proc. SPIE 10834, 108340D (2018).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Fast recognition of marine particles in underwater digital holography,” Proc. SPIE 10466, 1046627 (2017).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Marine particles investigation by underwater digital holography,” Proc. SPIE 10677, 1067725 (2018).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

V. Kumar, G. S. Khan, and C. Shakher, “Phase contrast imaging of red blood cells using digital holographic interferometric microscope,” Proc. SPIE 10453, 104532T (2017).
[Crossref]

Radiophys. Quantum Electron. (1)

V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quantum Electron. 57, 533–542 (2015).
[Crossref]

Russ. Phys. J. (6)

V. V. Dyomin, I. G. Polovtsev, and A. Y. Davydova, “Physical foundations of the method for determining geometric characteristics and particle recognition in digital holography,” Russ. Phys. J. 60, 174–176 (2017).

V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Russ. Phys. J. 58, 1467–1474 (2016).
[Crossref]

V. V. Dyomin and A. S. Olshukov, “Improvement of the quality of reconstructed holographic images by extrapolation of digital holograms,” Russ. Phys. J. 58, 1413–1419 (2016).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and E. V. Dzyuba, “Digital holographic video for studies of plankton dynamics,” Russ. Phys. J. 53, 857–866 (2011).
[Crossref]

V. V. Dyomin, I. G. Polovtsev, and D. V. Kamenev, “Quality control of ZnGeP2 single crystals using optical methods,” Russ. Phys. J. 58, 1479–1481 (2016).
[Crossref]

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Investigation of the process of optical damage of ZnGeP2 crystals using digital holography,” Russ. Phys. J. 61, 2042–2052 (2019).
[Crossref]

Other (12)

“Lasers and laser-related equipment–Determination of laser-induced damage threshold of optical surfaces–Part 2: S-on-1 test,” .

P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” in Quantum Electronics: Proceedings of the Third International Congress, P. Grivet and N. Bloembergen, eds. (Columbia University, 1964), p. 1559.

V. V. Dyomin, I. G. Polovtsev, D. V. Kamenev, A. S. Kozlova, and A. L. Olenin, “Plankton investigation in the Kara Sea by a submersible digital holocamera,” in OCEANS, Aberdeen, Scotland (IEEE, 2017), pp. 1–4.

Managing Health & Safety in Swimming Pools (HSG 179) (Health & Safety Executive (HSE), 2003).

“Water quality–determination of turbidity–Part 1: Quantitative methods,” .

“Optics and photonics–preparation of drawings for optical elements and systems,” .

R. Collier, C. Burckhardt, and L. Lin, Optical Holography (Academic, 1971).

D. E. Levashov and A. I. Zhavoronkov, “Instrumental assessment of concentration and sizes of mezoplankton particles in situ,” in Oceanology International (1994), Vol. 2, p. 15.

V. Dyomin, I. Polovtsev, A. Olshukov, and A. Davydova, “DHC sensor—a tool for monitoring the plankton biodiversity in a habitat,” in OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO) (IEEE, 2018), pp. 1–5.

D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of OCEANS MTS/IEEE (IEEE, 2005), pp. 1–7.

U. Schnars and W. Jueptner, Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

L. Yaroslavsky, Digital Holography and Digital Image Processing Principles, Methods, Algorithms (Academic, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) Illuminator and (b) recorder of the open-frame digital holographic camera.
Fig. 2.
Fig. 2. In-line scheme of recording of the Gabor digital holographs comprising semiconductor laser 1, scattering lens 2, forming and collecting objectives (identical) 3, CCD/CMOS camera 4, and computer 5.
Fig. 3.
Fig. 3. Options of DHC designs: (a) submerged DHC intended for sea particle research and (b) desktop DHC intended for diagnostics of optical media and solid solutions.
Fig. 4.
Fig. 4. Folded scheme of recording digital holograms with the DHC comprising laser emitting system I, recording system II, laser 1, objectives 2, portholes 3, prisms 4, and CMOS camera 5.
Fig. 5.
Fig. 5. Digital holograms and restored images of planktonic particles. The holograms were recorded at a depth of $-22.12\,\,{\rm m}$ during our mission in the Kara Sea on 13 August 2016 at a station with coordinates 72°32′49.2′′ N, 55°30′09.6′′ E.
Fig. 6.
Fig. 6. Depth distributions of plankton concentration on (a) 8 August 2016, (b) 11 August 11 2016, and (c) 13 August 2016 in the Kara Sea near Novaya Zemlya.
Fig. 7.
Fig. 7. Examples of images of plankton species recorded with the digital holographic camera in the Kara Sea: (a) Appendicularia, (b) Copepoda, (c) phytoplankton chains, and (d) phytoplankton colonies.
Fig. 8.
Fig. 8. Two-dimensional displays of holographic images of the investigated volume with plankton particles and histograms of their size distributions at (a) and (d) a depth of 34.8 m below sea level on 8 August 2016, (b) and (e) at a depth of 203.44 m below sea level on 11 August 2016, and (c) and (f) at a depth of 21.78 m below sea level on 13 August 2016. The results of automatic classification in Figs (a)–(c) are marked by numbers: (1) Appendicularia, (2) Copepoda, (3) phytoplankton chains, and (4) phytoplankton colonies.
Fig. 9.
Fig. 9. Histograms of settling particle size distribution obtained from (a) individual measurements and (b) synthesized by statistical averaging over 29 holograms.
Fig. 10.
Fig. 10. Block diagram of the digital holographic camera for diagnostics of optical media comprising laser source 1, beam expander 2, two-coordinate positioner 3, CCD/CMOS camera 4, test sample 5, and computer 6.
Fig. 11.
Fig. 11. Digital hologram and restored images of inclusions: (1 and 2) internal bubbles, (3 and 4) surface defects, and (5–7) striae.
Fig. 12.
Fig. 12. Optical inhomogeneities in the form of growth striae with characteristic size of $\sim\! {0.1}\,\,{\rm mm}$ , their bundles with sizes 500–1000 µm, and changes in the refractive index leading to a shift of the interference band (by $\sim\!{1}$ interference band from one growth striae to another): (a) hologram, (b) fragment of the restored image showing the bent character of growth striae with curvature radius ${\rm R}\sim {25}\,\,{\rm mm}$ (the deflection arrow was 0.5 mm for a 10 mm base), and (c) fragment of the restored image showing the phase shift caused by different refractive indices in different growth striae.
Fig. 13.
Fig. 13. Physical inhomogeneities between the Griffiths cracks inside the ${{\rm ZnGeP}_2}$ crystal depicted by dashed curves. The hologram is shown on the right, and the restored image is shown on the left.
Fig. 14.
Fig. 14. Examples of restored holographic images of inclusions in plates cut out at different angles from a single crystal boule: (a) photograph of the ${{\rm ZnGeP}_2}$ boule, (b) restored image of the plate cut out perpendicularly to the single crystal growth direction, (c) restored image of the plate cut out at an angle to the growth axis, and (d) restored image of the ${{\rm ZnGeP}_2}$ plate cut out along the single crystal growth direction. Black lines indicate the direction of sample cutting.
Fig. 15.
Fig. 15. Results of processing and restoration of images from the digital holograms recorded for the ${{\rm ZnGeP}_2}$ single crystal damaged upon exposure to laser radiation with energy density of ${0.6}\,\,{{\rm J/cm}^2}$ : time lapse of frames and restored image of artefacts accompanying crystal damage in the best setting plane. The arrow indicates the direction of radiation incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U ( x 2 , y 2 , z ) = I H ( x 1 , y 1 ) exp ( i k z ) i λ z exp { i k 2 z [ ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 ] } d x 1 d y 1 ,

Metrics