Abstract

We present a transparent autostereoscopic display consisting of laser picoprojectors, a wedge light guide, and a holographic optical element. The holographic optical element is optically recorded, and we present the recording setup, our prototype, as well as the results. Such a display can superimpose 3D data on the real world without any wearable.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recent progress in see-through three-dimensional displays using holographic optical elements [Invited]

Changwon Jang, Chang-Kun Lee, Jinsoo Jeong, Gang Li, Seungjae Lee, Jiwoon Yeom, Keehoon Hong, and Byoungho Lee
Appl. Opt. 55(3) A71-A85 (2016)

High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element

Huan Deng, Cong Chen, Min-Yang He, Jiao-Jiao Li, Han-Le Zhang, and Qiong-Hua Wang
J. Opt. Soc. Am. A 36(4) 588-593 (2019)

Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements

Keehoon Hong, Jiwoon Yeom, Changwon Jang, Gang Li, Jisoo Hong, and Byoungho Lee
Opt. Express 22(12) 14363-14374 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Crespel, P. Reuter, X. Granier, and A. Travis, “Autostereoscopic transparent display using a wedge light guide and a holographic optical element,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M3A.4.
  2. P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
    [Crossref]
  3. J. Lee, A. Olwal, H. Ishii, and C. Boulanger, “Spacetop: integrating 2D and spatial 3D interactions in a see-through desktop environment,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2013), pp. 189–192.
  4. V. S. Popescu and J. P. Wachs, “Simulated transparent display with augmented reality for remote collaboration,” U.S. patent9,503,681 (22November2016).
  5. “Optinvent,” 2019, https://www.optinvent.com .
  6. “Google Glass,” https://www.google.com/glass/start .
  7. “Microsoft Hololens,” 2019, https://www.microsoft.com/hololens .
  8. “Meta,” 2016, https://www.metavision.com .
  9. D. E. Roberts, History of lenticular and related autostereoscopic methods (Leap Technologies. Hillsboro, 2003), Vol. 16.
  10. “Alioscopy,” 2019, https://www.alioscopy.com .
  11. A. Nashel and H. Fuchs, “Random hole display: a non-uniform barrier autostereoscopic display,” in 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (IEEE, 2009), pp. 1–4.
  12. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
    [Crossref]
  13. I. P. Howard and B. J. Rogers, Seeing in Depth (University of Toronto Press, 2002), Vol. 2: Depth perception.
  14. T. Jarvenpaa and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 825–833 (2008).
    [Crossref]
  15. Y. Takaki and Y. Yamaguchi, “Flat-panel see-through three-dimensional display based on integral imaging,” Opt. Lett. 40, 1873–1876 (2015).
    [Crossref]
  16. A. Karnik, W. Mayol-Cuevas, and S. Subramanian, “Mustard: a multi user see through AR display,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2012) pp. 2541–2550.
  17. J.-Y. Hong, S.-G. Park, C.-K. Lee, S. Moon, S.-J. Kim, J. Hong, Y. Kim, and B. Lee, “See-through multi-projection three-dimensional display using transparent anisotropic diffuser,” Opt. Express 24, 14138–14151 (2016).
    [Crossref]
  18. C.-K. Lee, S. G. Park, S. Moon, J.-Y. Hong, and B. Lee, “Compact multi-projection 3D display system with light-guide projection,” Opt. Express 23, 28945–28959 (2015).
    [Crossref]
  19. Z. He, X. Sui, G. Jin, and L. Cao, “Progress in virtual reality and augmented reality based on holographic display,” Appl. Opt. 58, A74–A81 (2019).
    [Crossref]
  20. B. C. Kress and W. J. Cummings, “11-1: invited paper: towards the ultimate mixed reality experience: hololens display architecture choices,” SID Symp. Digest Tech. Pap. 48, 127–131 (2017).
    [Crossref]
  21. T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.
  22. A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “Astor: an autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.
  23. A. Travis, F. Payne, F. Zhong, and J. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” in Proceedings of the 20th International Display Research Conference (Society for Information Display, 2000), vol. 2000, pp. 292–295.
  24. C. Lee, A. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectron. 2, 24–28 (2008).
    [Crossref]
  25. T. Crespel, A. Travis, P. Reuter, and X. Granier, “Wedge cameras for minimally invasive archaeology,” J. Comput. Cult. Herit. 12, 1–13 (2019).
    [Crossref]
  26. A. Travis, “Flat-panel display using tapered waveguide,” U.S. patent7,410,286 (13February2003). Patent WO/2003/013151.
  27. “Ultimate holography,” 2019, http://www.ultimate-holography.com .
  28. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” The Bell System Technical Journal 48, 2909–2947 (1969).
    [Crossref]
  29. “Sony MP-CL1A,” 2017, http://www.sony.com/electronics/projector/mp-cl1a .

2019 (2)

Z. He, X. Sui, G. Jin, and L. Cao, “Progress in virtual reality and augmented reality based on holographic display,” Appl. Opt. 58, A74–A81 (2019).
[Crossref]

T. Crespel, A. Travis, P. Reuter, and X. Granier, “Wedge cameras for minimally invasive archaeology,” J. Comput. Cult. Herit. 12, 1–13 (2019).
[Crossref]

2017 (1)

B. C. Kress and W. J. Cummings, “11-1: invited paper: towards the ultimate mixed reality experience: hololens display architecture choices,” SID Symp. Digest Tech. Pap. 48, 127–131 (2017).
[Crossref]

2016 (1)

2015 (2)

2012 (1)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

2008 (2)

T. Jarvenpaa and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 825–833 (2008).
[Crossref]

C. Lee, A. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectron. 2, 24–28 (2008).
[Crossref]

2006 (1)

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” The Bell System Technical Journal 48, 2909–2947 (1969).
[Crossref]

Agács, T.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Balet, O.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Balogh, T.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Becker, E.

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Bettio, F.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Boulanger, C.

J. Lee, A. Olwal, H. Ishii, and C. Boulanger, “Spacetop: integrating 2D and spatial 3D interactions in a see-through desktop environment,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2013), pp. 189–192.

Bouvier, E.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Cao, L.

Crespel, T.

T. Crespel, A. Travis, P. Reuter, and X. Granier, “Wedge cameras for minimally invasive archaeology,” J. Comput. Cult. Herit. 12, 1–13 (2019).
[Crossref]

T. Crespel, P. Reuter, X. Granier, and A. Travis, “Autostereoscopic transparent display using a wedge light guide and a holographic optical element,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M3A.4.

Cummings, W. J.

B. C. Kress and W. J. Cummings, “11-1: invited paper: towards the ultimate mixed reality experience: hololens display architecture choices,” SID Symp. Digest Tech. Pap. 48, 127–131 (2017).
[Crossref]

Forgács, T.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Fuchs, H.

A. Nashel and H. Fuchs, “Random hole display: a non-uniform barrier autostereoscopic display,” in 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (IEEE, 2009), pp. 1–4.

Gobbetti, E.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Gorrn, P.

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Granier, X.

T. Crespel, A. Travis, P. Reuter, and X. Granier, “Wedge cameras for minimally invasive archaeology,” J. Comput. Cult. Herit. 12, 1–13 (2019).
[Crossref]

T. Crespel, P. Reuter, X. Granier, and A. Travis, “Autostereoscopic transparent display using a wedge light guide and a holographic optical element,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M3A.4.

Gustafsson, J.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “Astor: an autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.

He, Z.

Hirsch, M.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

Hong, J.

Hong, J.-Y.

Howard, I. P.

I. P. Howard and B. J. Rogers, Seeing in Depth (University of Toronto Press, 2002), Vol. 2: Depth perception.

Ishii, H.

J. Lee, A. Olwal, H. Ishii, and C. Boulanger, “Spacetop: integrating 2D and spatial 3D interactions in a see-through desktop environment,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2013), pp. 189–192.

Jarvenpaa, T.

T. Jarvenpaa and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 825–833 (2008).
[Crossref]

Jin, G.

Johannes, H.-H.

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Karnik, A.

A. Karnik, W. Mayol-Cuevas, and S. Subramanian, “Mustard: a multi user see through AR display,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2012) pp. 2541–2550.

Kim, S.-J.

Kim, Y.

Kjellberg, T.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “Astor: an autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” The Bell System Technical Journal 48, 2909–2947 (1969).
[Crossref]

Kowalsky, W.

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Kress, B. C.

B. C. Kress and W. J. Cummings, “11-1: invited paper: towards the ultimate mixed reality experience: hololens display architecture choices,” SID Symp. Digest Tech. Pap. 48, 127–131 (2017).
[Crossref]

Kroger, M.

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Lanman, D.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

Lee, B.

Lee, C.

C. Lee, A. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectron. 2, 24–28 (2008).
[Crossref]

Lee, C.-K.

Lee, J.

J. Lee, A. Olwal, H. Ishii, and C. Boulanger, “Spacetop: integrating 2D and spatial 3D interactions in a see-through desktop environment,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2013), pp. 189–192.

Lin, R.

C. Lee, A. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectron. 2, 24–28 (2008).
[Crossref]

Lindfors, C.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “Astor: an autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.

Mattsson, L.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “Astor: an autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.

Mayol-Cuevas, W.

A. Karnik, W. Mayol-Cuevas, and S. Subramanian, “Mustard: a multi user see through AR display,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2012) pp. 2541–2550.

Meyer, J.

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Moon, S.

Moore, J.

A. Travis, F. Payne, F. Zhong, and J. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” in Proceedings of the 20th International Display Research Conference (Society for Information Display, 2000), vol. 2000, pp. 292–295.

Nashel, A.

A. Nashel and H. Fuchs, “Random hole display: a non-uniform barrier autostereoscopic display,” in 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (IEEE, 2009), pp. 1–4.

Olwal, A.

J. Lee, A. Olwal, H. Ishii, and C. Boulanger, “Spacetop: integrating 2D and spatial 3D interactions in a see-through desktop environment,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2013), pp. 189–192.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “Astor: an autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.

Park, S. G.

Park, S.-G.

Payne, F.

A. Travis, F. Payne, F. Zhong, and J. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” in Proceedings of the 20th International Display Research Conference (Society for Information Display, 2000), vol. 2000, pp. 292–295.

Popescu, V. S.

V. S. Popescu and J. P. Wachs, “Simulated transparent display with augmented reality for remote collaboration,” U.S. patent9,503,681 (22November2016).

Raskar, R.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

Reuter, P.

T. Crespel, A. Travis, P. Reuter, and X. Granier, “Wedge cameras for minimally invasive archaeology,” J. Comput. Cult. Herit. 12, 1–13 (2019).
[Crossref]

T. Crespel, P. Reuter, X. Granier, and A. Travis, “Autostereoscopic transparent display using a wedge light guide and a holographic optical element,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M3A.4.

Riedl, T.

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Roberts, D. E.

D. E. Roberts, History of lenticular and related autostereoscopic methods (Leap Technologies. Hillsboro, 2003), Vol. 16.

Rogers, B. J.

I. P. Howard and B. J. Rogers, Seeing in Depth (University of Toronto Press, 2002), Vol. 2: Depth perception.

Salmimaa, M.

T. Jarvenpaa and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 825–833 (2008).
[Crossref]

Sander, M.

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Subramanian, S.

A. Karnik, W. Mayol-Cuevas, and S. Subramanian, “Mustard: a multi user see through AR display,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2012) pp. 2541–2550.

Sui, X.

Takaki, Y.

Travis, A.

T. Crespel, A. Travis, P. Reuter, and X. Granier, “Wedge cameras for minimally invasive archaeology,” J. Comput. Cult. Herit. 12, 1–13 (2019).
[Crossref]

C. Lee, A. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectron. 2, 24–28 (2008).
[Crossref]

A. Travis, “Flat-panel display using tapered waveguide,” U.S. patent7,410,286 (13February2003). Patent WO/2003/013151.

T. Crespel, P. Reuter, X. Granier, and A. Travis, “Autostereoscopic transparent display using a wedge light guide and a holographic optical element,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M3A.4.

A. Travis, F. Payne, F. Zhong, and J. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” in Proceedings of the 20th International Display Research Conference (Society for Information Display, 2000), vol. 2000, pp. 292–295.

Wachs, J. P.

V. S. Popescu and J. P. Wachs, “Simulated transparent display with augmented reality for remote collaboration,” U.S. patent9,503,681 (22November2016).

Wetzstein, G.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

Yamaguchi, Y.

Zanetti, G.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Zhong, F.

A. Travis, F. Payne, F. Zhong, and J. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” in Proceedings of the 20th International Display Research Conference (Society for Information Display, 2000), vol. 2000, pp. 292–295.

ACM Trans. Graph. (1)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

Adv. Mater. (1)

P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, and T. Riedl, “Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater. 18, 738–741 (2006).
[Crossref]

Appl. Opt. (1)

IET Optoelectron. (1)

C. Lee, A. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectron. 2, 24–28 (2008).
[Crossref]

J. Comput. Cult. Herit. (1)

T. Crespel, A. Travis, P. Reuter, and X. Granier, “Wedge cameras for minimally invasive archaeology,” J. Comput. Cult. Herit. 12, 1–13 (2019).
[Crossref]

J. Soc. Inf. Disp. (1)

T. Jarvenpaa and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 825–833 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

SID Symp. Digest Tech. Pap. (1)

B. C. Kress and W. J. Cummings, “11-1: invited paper: towards the ultimate mixed reality experience: hololens display architecture choices,” SID Symp. Digest Tech. Pap. 48, 127–131 (2017).
[Crossref]

The Bell System Technical Journal (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” The Bell System Technical Journal 48, 2909–2947 (1969).
[Crossref]

Other (18)

“Sony MP-CL1A,” 2017, http://www.sony.com/electronics/projector/mp-cl1a .

A. Karnik, W. Mayol-Cuevas, and S. Subramanian, “Mustard: a multi user see through AR display,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2012) pp. 2541–2550.

I. P. Howard and B. J. Rogers, Seeing in Depth (University of Toronto Press, 2002), Vol. 2: Depth perception.

T. Crespel, P. Reuter, X. Granier, and A. Travis, “Autostereoscopic transparent display using a wedge light guide and a holographic optical element,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper M3A.4.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “Astor: an autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.

A. Travis, F. Payne, F. Zhong, and J. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” in Proceedings of the 20th International Display Research Conference (Society for Information Display, 2000), vol. 2000, pp. 292–295.

A. Travis, “Flat-panel display using tapered waveguide,” U.S. patent7,410,286 (13February2003). Patent WO/2003/013151.

“Ultimate holography,” 2019, http://www.ultimate-holography.com .

J. Lee, A. Olwal, H. Ishii, and C. Boulanger, “Spacetop: integrating 2D and spatial 3D interactions in a see-through desktop environment,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2013), pp. 189–192.

V. S. Popescu and J. P. Wachs, “Simulated transparent display with augmented reality for remote collaboration,” U.S. patent9,503,681 (22November2016).

“Optinvent,” 2019, https://www.optinvent.com .

“Google Glass,” https://www.google.com/glass/start .

“Microsoft Hololens,” 2019, https://www.microsoft.com/hololens .

“Meta,” 2016, https://www.metavision.com .

D. E. Roberts, History of lenticular and related autostereoscopic methods (Leap Technologies. Hillsboro, 2003), Vol. 16.

“Alioscopy,” 2019, https://www.alioscopy.com .

A. Nashel and H. Fuchs, “Random hole display: a non-uniform barrier autostereoscopic display,” in 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (IEEE, 2009), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Principle of a wedge guide.
Fig. 2.
Fig. 2. (left) Overview of the prototype: five projectors labeled $ - {2} \ldots {2}$ are coupled into a wedge light guide, and a HOE scatters the light towards independent viewing zones $ - {2} \ldots {2}$ . (right) Photograph of our prototype from viewing zone 0.
Fig. 3.
Fig. 3. Recording setup of the HOE. The object beam is created by a rectangular diffuser representing the viewing zone. The reference beam is created by creating a convergent beam with a spherical mirror and collimating it in one direction with a cylinder lens. (a) Side view; (b) top view; (c) front view.
Fig. 4.
Fig. 4. Typical diffraction efficiency of a volume hologram depending on the deviation from the Bragg angle and the incidence angles of the five projectors of our display (in dashed lines).
Fig. 5.
Fig. 5. Calibration procedure and image transformation of five checkerboard patterns that align on the imaging area.
Fig. 6.
Fig. 6. (a) Photograph of the five views projected on a screen at distance $ {\rm d_{\rm obs}} $ from the HOE; (b) normalized intensity profile along the horizontal direction.
Fig. 7.
Fig. 7. Images of the viewing zones on a $ {{\rm D}_{\rm obs}} $ distant screen, created by (a) red, green, and blue wavelengths; (b) red only; (c) green only; (d) blue only. (e) Illustration of the wavelength-dependent contributions of each grating.
Fig. 8.
Fig. 8. Photographs of the display from each viewing zone. Parallax and transparency can be observed.

Metrics