Abstract

In this paper, we present a 2D/3D mixed system with high image quality based on integral imaging and a switchable diffuser element. The proposed system comprises a liquid crystal display screen, lens array, switchable diffuser element and projector. The switchable diffuser element can be controlled to present 2D/3D mixed images or 2D and 3D images independently, and can reduce the Moire fringe and black grid. In addition to the improved display quality, the proposed system has advantages of a simple structure and is low cost, which contribute to the portability and practicability.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal

Han-Le Zhang, Huan Deng, Jiao-Jiao Li, Min-Yang He, Da-Hai Li, and Qiong-Hua Wang
Opt. Lett. 44(2) 387-390 (2019)

Tabletop augmented reality 3D display system based on integral imaging

Han-Le Zhang, Huan Deng, Wen-Tao Yu, Min-Yang He, Da-Hai Li, and Qiong-Hua Wang
J. Opt. Soc. Am. B 34(5) B16-B21 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
    [Crossref]
  2. Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2015).
    [Crossref]
  3. N. Chen, H. Wang, A. Zhou, and G. Situ, “High performance light field acquisition,” in Digital holography and three-dimensional imaging (2017), W2A–W21.
  4. A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102, 1571–1585 (2014).
    [Crossref]
  5. B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.
  6. H. Ren, Q. H. Wang, Y. Xing, M. Zhao, L. Luo, and H. Deng, “Super-multiview integral imaging scheme based on sparse camera array and CNN super-resolution,” Appl. Opt. 58, A190–A196 (2019).
    [Crossref]
  7. S. J. Xing, X. Z. Sang, X. Yu, D. Chen, P. Bo, and G. Xin, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25, 330–338 (2017).
    [Crossref]
  8. M. Martinez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light field, and plenoptic systems,” Adv. Opt. Photon. 10, 512–566 (2018).
    [Crossref]
  9. X. Xiao, B. Javidi, and M. Martinez-Corral, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
    [Crossref]
  10. M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).
    [Crossref]
  11. F. P. Sotoca, M. Martínez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional optical sensing and imaging systems (MOSIS): from macro to micro scales,” Proc. IEEE 105, 850–875 (2017).
    [Crossref]
  12. Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
    [Crossref]
  13. H. L. Zhang, H. Deng, J. J. Li, M. Y. He, D. H. Li, and Q. H. Wang, “Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal,” Opt. Lett. 44, 387–390 (2019).
    [Crossref]
  14. K. Hong, J. Yeom, C. Jang, G. Li, J. Hong, and B. Lee, “Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements,” Opt. Express 22, 14363–14374 (2014).
    [Crossref]
  15. M. Park, S. Lee, B. T. Lee, and H. J. Choi, “Enhancement of the perceived image quality of a 2D/3D convertible directional-backlight unit system using a double-slit barrier array and an active diffuser,” Appl. Opt. 54, 2832–2837 (2015).
    [Crossref]
  16. G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
    [Crossref]
  17. S. Park, B. S. Song, and S. W. Min, “2D/3D convertible display with enhanced 3D viewing region based on integral imaging,” Proc. SPIE 7524, 75240O (2010).
    [Crossref]
  18. H. Watanabe, M. Kawakita, N. Okaichi, H. Sasaki, and T. Mishina, “Integral imaging system using locally controllable point light source array,” J. Electron. Imaging. 2018, 247 (2018).
    [Crossref]
  19. H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, “A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array,” Proc. SPIE 10219, 1021910 (2017).
    [Crossref]
  20. J. Yeom, J. Jeong, C. Jang, G. Li, K. Hong, and B. Lee, “Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element,” Appl. Opt. 54, 8856–8862 (2015).
    [Crossref]
  21. Z. L. Xiong, S. L. Li, J. Chen, H. Deng, and Q. H. Wang, “Nonunified integral imaging elemental image array generation method based on selective pixel sampling algorithm,” Appl. Opt. 54, 2532–2536 (2015).
    [Crossref]
  22. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.
  23. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” Siggraph 96, 43–54 (1996).
    [Crossref]
  24. Y. Xing, Q. H. Wang, L. Luo, H. Ren, and H. Deng, “High-performance dual-view 3D display system based on integral imaging,” Proc. IEEE 11, 7000212 (2019).
    [Crossref]
  25. C. Yu, J. Yuan, F. C. Fan, C. C. Jiang, S. Choi, X. Sang, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18, 27820–27826 (2010).
    [Crossref]

2019 (3)

2018 (3)

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

H. Watanabe, M. Kawakita, N. Okaichi, H. Sasaki, and T. Mishina, “Integral imaging system using locally controllable point light source array,” J. Electron. Imaging. 2018, 247 (2018).
[Crossref]

M. Martinez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light field, and plenoptic systems,” Adv. Opt. Photon. 10, 512–566 (2018).
[Crossref]

2017 (5)

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).
[Crossref]

F. P. Sotoca, M. Martínez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional optical sensing and imaging systems (MOSIS): from macro to micro scales,” Proc. IEEE 105, 850–875 (2017).
[Crossref]

S. J. Xing, X. Z. Sang, X. Yu, D. Chen, P. Bo, and G. Xin, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25, 330–338 (2017).
[Crossref]

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, “A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array,” Proc. SPIE 10219, 1021910 (2017).
[Crossref]

2016 (1)

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

2015 (4)

2014 (2)

K. Hong, J. Yeom, C. Jang, G. Li, J. Hong, and B. Lee, “Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements,” Opt. Express 22, 14363–14374 (2014).
[Crossref]

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102, 1571–1585 (2014).
[Crossref]

2013 (1)

2010 (2)

S. Park, B. S. Song, and S. W. Min, “2D/3D convertible display with enhanced 3D viewing region based on integral imaging,” Proc. SPIE 7524, 75240O (2010).
[Crossref]

C. Yu, J. Yuan, F. C. Fan, C. C. Jiang, S. Choi, X. Sang, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18, 27820–27826 (2010).
[Crossref]

1996 (1)

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” Siggraph 96, 43–54 (1996).
[Crossref]

Barreiro, J. C.

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).
[Crossref]

Beneduci, A.

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

Bo, P.

Cao, L. C.

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

Carnicer, A.

B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.

Chen, D.

Chen, J.

Chen, N.

N. Chen, H. Wang, A. Zhou, and G. Situ, “High performance light field acquisition,” in Digital holography and three-dimensional imaging (2017), W2A–W21.

Chidichimo, G.

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

Cho, M.

B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.

Choi, H. J.

Choi, S.

Cohen, M. F.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” Siggraph 96, 43–54 (1996).
[Crossref]

Corral, M. M.

B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.

Cospito, S.

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

Deng, H.

Deng, Z.

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

Dorado, A.

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).
[Crossref]

Fan, F. C.

Gortler, S. J.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” Siggraph 96, 43–54 (1996).
[Crossref]

Grzeszczuk, R.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” Siggraph 96, 43–54 (1996).
[Crossref]

Hanrahan, P.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

Hao, J.

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

Hasegawa, S.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2015).
[Crossref]

Hayasaki, Y.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2015).
[Crossref]

He, M. Y.

He, Z.

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

Hong, J.

Hong, K.

Hoshi, T.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2015).
[Crossref]

Hsieh, P. Y.

H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, “A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array,” Proc. SPIE 10219, 1021910 (2017).
[Crossref]

Huang, P. J.

H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, “A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array,” Proc. SPIE 10219, 1021910 (2017).
[Crossref]

Huang, Y. P.

H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, “A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array,” Proc. SPIE 10219, 1021910 (2017).
[Crossref]

F. P. Sotoca, M. Martínez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional optical sensing and imaging systems (MOSIS): from macro to micro scales,” Proc. IEEE 105, 850–875 (2017).
[Crossref]

Jang, C.

Javidi, B.

M. Martinez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light field, and plenoptic systems,” Adv. Opt. Photon. 10, 512–566 (2018).
[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).
[Crossref]

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102, 1571–1585 (2014).
[Crossref]

X. Xiao, B. Javidi, and M. Martinez-Corral, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
[Crossref]

B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.

Jeong, J.

Jiang, C. C.

Jin, G.

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

Kawakita, M.

H. Watanabe, M. Kawakita, N. Okaichi, H. Sasaki, and T. Mishina, “Integral imaging system using locally controllable point light source array,” J. Electron. Imaging. 2018, 247 (2018).
[Crossref]

Kumagai, K.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2015).
[Crossref]

Lee, B.

Lee, B. T.

Lee, H. H.

H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, “A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array,” Proc. SPIE 10219, 1021910 (2017).
[Crossref]

Lee, S.

Levoy, M.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

Li, D. H.

Li, G.

Li, J. J.

Li, S. L.

Luo, L.

Y. Xing, Q. H. Wang, L. Luo, H. Ren, and H. Deng, “High-performance dual-view 3D display system based on integral imaging,” Proc. IEEE 11, 7000212 (2019).
[Crossref]

H. Ren, Q. H. Wang, Y. Xing, M. Zhao, L. Luo, and H. Deng, “Super-multiview integral imaging scheme based on sparse camera array and CNN super-resolution,” Appl. Opt. 58, A190–A196 (2019).
[Crossref]

Ma, X.

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

Maltese, V.

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

Markman, A.

B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.

Martinez-Corral, M.

Martínez-Corral, M.

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).
[Crossref]

F. P. Sotoca, M. Martínez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional optical sensing and imaging systems (MOSIS): from macro to micro scales,” Proc. IEEE 105, 850–875 (2017).
[Crossref]

Min, S. W.

S. Park, B. S. Song, and S. W. Min, “2D/3D convertible display with enhanced 3D viewing region based on integral imaging,” Proc. SPIE 7524, 75240O (2010).
[Crossref]

Ming, H.

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

Mishina, T.

H. Watanabe, M. Kawakita, N. Okaichi, H. Sasaki, and T. Mishina, “Integral imaging system using locally controllable point light source array,” J. Electron. Imaging. 2018, 247 (2018).
[Crossref]

Ochiai, Y.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2015).
[Crossref]

Okaichi, N.

H. Watanabe, M. Kawakita, N. Okaichi, H. Sasaki, and T. Mishina, “Integral imaging system using locally controllable point light source array,” J. Electron. Imaging. 2018, 247 (2018).
[Crossref]

Pandolfi, G.

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

Park, M.

Park, S.

S. Park, B. S. Song, and S. W. Min, “2D/3D convertible display with enhanced 3D viewing region based on integral imaging,” Proc. SPIE 7524, 75240O (2010).
[Crossref]

Pla, F.

B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.

Rekimoto, J.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2015).
[Crossref]

Ren, H.

H. Ren, Q. H. Wang, Y. Xing, M. Zhao, L. Luo, and H. Deng, “Super-multiview integral imaging scheme based on sparse camera array and CNN super-resolution,” Appl. Opt. 58, A190–A196 (2019).
[Crossref]

Y. Xing, Q. H. Wang, L. Luo, H. Ren, and H. Deng, “High-performance dual-view 3D display system based on integral imaging,” Proc. IEEE 11, 7000212 (2019).
[Crossref]

Saavedra, G.

F. P. Sotoca, M. Martínez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional optical sensing and imaging systems (MOSIS): from macro to micro scales,” Proc. IEEE 105, 850–875 (2017).
[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).
[Crossref]

Sang, X.

Sang, X. Z.

Sasaki, H.

H. Watanabe, M. Kawakita, N. Okaichi, H. Sasaki, and T. Mishina, “Integral imaging system using locally controllable point light source array,” J. Electron. Imaging. 2018, 247 (2018).
[Crossref]

Shen, X.

B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.

Situ, G.

N. Chen, H. Wang, A. Zhou, and G. Situ, “High performance light field acquisition,” in Digital holography and three-dimensional imaging (2017), W2A–W21.

Song, B. S.

S. Park, B. S. Song, and S. W. Min, “2D/3D convertible display with enhanced 3D viewing region based on integral imaging,” Proc. SPIE 7524, 75240O (2010).
[Crossref]

Sotoca, F. P.

F. P. Sotoca, M. Martínez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional optical sensing and imaging systems (MOSIS): from macro to micro scales,” Proc. IEEE 105, 850–875 (2017).
[Crossref]

Stern, A.

F. P. Sotoca, M. Martínez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional optical sensing and imaging systems (MOSIS): from macro to micro scales,” Proc. IEEE 105, 850–875 (2017).
[Crossref]

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102, 1571–1585 (2014).
[Crossref]

Szeliski, R.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” Siggraph 96, 43–54 (1996).
[Crossref]

Tassini, P.

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

Tursi, A.

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

Wang, A.

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

Wang, H.

N. Chen, H. Wang, A. Zhou, and G. Situ, “High performance light field acquisition,” in Digital holography and three-dimensional imaging (2017), W2A–W21.

Wang, Q. H.

Wang, S.

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

Wang, Z.

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

Watanabe, H.

H. Watanabe, M. Kawakita, N. Okaichi, H. Sasaki, and T. Mishina, “Integral imaging system using locally controllable point light source array,” J. Electron. Imaging. 2018, 247 (2018).
[Crossref]

Wu, J. Y.

H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, “A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array,” Proc. SPIE 10219, 1021910 (2017).
[Crossref]

Wu, S.

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

Xiao, X.

Xin, G.

Xing, S. J.

Xing, Y.

H. Ren, Q. H. Wang, Y. Xing, M. Zhao, L. Luo, and H. Deng, “Super-multiview integral imaging scheme based on sparse camera array and CNN super-resolution,” Appl. Opt. 58, A190–A196 (2019).
[Crossref]

Y. Xing, Q. H. Wang, L. Luo, H. Ren, and H. Deng, “High-performance dual-view 3D display system based on integral imaging,” Proc. IEEE 11, 7000212 (2019).
[Crossref]

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

Xiong, Z. L.

Xu, D.

Yeom, J.

Yitzhaky, Y.

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102, 1571–1585 (2014).
[Crossref]

Yu, C.

Yu, X.

Yuan, J.

Zhang, H. L.

Zhang, Z.

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

Zhao, M.

Zhou, A.

N. Chen, H. Wang, A. Zhou, and G. Situ, “High performance light field acquisition,” in Digital holography and three-dimensional imaging (2017), W2A–W21.

Zhu, C.

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

ACM Trans. Graph. (1)

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35, 17 (2015).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (5)

Appl. Phys. Lett. (1)

L. C. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111, 141101 (2017).
[Crossref]

J. Disp. Technol. (1)

Z. Wang, A. Wang, S. Wang, Y. Xing, Z. Deng, X. Ma, and H. Ming, “High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate,” J. Disp. Technol. 12, 1706–1709 (2016).
[Crossref]

J. Electron. Imaging. (1)

H. Watanabe, M. Kawakita, N. Okaichi, H. Sasaki, and T. Mishina, “Integral imaging system using locally controllable point light source array,” J. Electron. Imaging. 2018, 247 (2018).
[Crossref]

Liq. Cryst. (1)

G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, “2D/3D switchable displays through PDLC reverse mode parallax barrier,” Liq. Cryst. 45, 2132–2138 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (4)

Y. Xing, Q. H. Wang, L. Luo, H. Ren, and H. Deng, “High-performance dual-view 3D display system based on integral imaging,” Proc. IEEE 11, 7000212 (2019).
[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).
[Crossref]

F. P. Sotoca, M. Martínez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional optical sensing and imaging systems (MOSIS): from macro to micro scales,” Proc. IEEE 105, 850–875 (2017).
[Crossref]

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102, 1571–1585 (2014).
[Crossref]

Proc. SPIE (2)

S. Park, B. S. Song, and S. W. Min, “2D/3D convertible display with enhanced 3D viewing region based on integral imaging,” Proc. SPIE 7524, 75240O (2010).
[Crossref]

H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, “A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array,” Proc. SPIE 10219, 1021910 (2017).
[Crossref]

Siggraph (1)

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” Siggraph 96, 43–54 (1996).
[Crossref]

Other (3)

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

B. Javidi, X. Shen, A. Markman, M. Cho, M. M. Corral, A. Carnicer, and F. Pla, “Multidimensional integral imaging for sensing,” in Imaging systems and applications (2019), paper ITu2B-2.

N. Chen, H. Wang, A. Zhou, and G. Situ, “High performance light field acquisition,” in Digital holography and three-dimensional imaging (2017), W2A–W21.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Structure of the proposed 2D/3D mixed display system.
Fig. 2.
Fig. 2. Principle of the proposed 2D/3D mixed display system.
Fig. 3.
Fig. 3. Operating principle of the polymer dispersed liquid crystal film on (a) scattering mode and (b) transparent mode.
Fig. 4.
Fig. 4. Schematic diagram of the proposed system for (a) 2D display and (b) 3D display independently.
Fig. 5.
Fig. 5. Experimental setup for the proposed 2D/3D mixed display system.
Fig. 6.
Fig. 6. Source images for (a) 3D display and (b) 2D display.
Fig. 7.
Fig. 7. Experimental display results: (a) 2D/3D mixed display, (b) 2D display and (c) 3D display.
Fig. 8.
Fig. 8. Diverse perspectives of the reconstructed 3D images.
Fig. 9.
Fig. 9. Moire fringe: (a) display result without SDE, (b) the distribution of three colors from red line in (a), (c) display result with SDE, (d) the distribution of three colors from red line in (c).
Fig. 10.
Fig. 10. Black grid: (a) display result without SDE, (b) the black grid distribution of the magnified area in (a), (c) display result with SDE, (d) the black grid distribution of the magnified area in (c).
Fig. 11.
Fig. 11. 3D image comparison of integral imaging: (a) traditional integral imaging without SDE and (b) the proposed method in 3D display mode with SDE.

Tables (1)

Tables Icon

Table 1. Optical Device Parameters in Our Experiments

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

EIA = M 2 m , n i , j I ( M i + m , N j + n ) × δ ( x M i m , y N j + n ) ,
L i = P ( x , y , α , β ) ,
F g r i d = 1 d 2 r e c t ( α α c Δ α , β β c Δ β ) c o m b ( α d , β d ) ,
I d i f f u s e r ( θ μ ) = I μ 1 2 π σ exp ( ( θ μ φ μ ) 2 2 σ 2 ) ,
1 l + 1 g = 1 f ,
θ = 2 arctan ( d 2 l ) ,

Metrics