Abstract

Significant phase distortion corrections were achieved by optimizing the digital driving patterns of phase-only liquid crystal on silicon devices for digital holographic applications. Nearly perfect phase linearity and phase flicker of 0.09% over 256 addressed phase levels in respect to the total modulation range of $ 2\pi $ were realized, enabling a meaningful increase of phase levels from 8 bits (256 levels) to 9 bits (512 levels). Tests were carried out to evaluate the qualities of optically reconstructed holographic images with reduced phase flicker and optimized phase linearity, and an increase of 17.7% in the root-mean-square contrast was demonstrated.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase flicker optimisation in digital liquid crystal on silicon devices

H. Yang and D. P. Chu
Opt. Express 27(17) 24556-24567 (2019)

Characterization of the spatially anamorphic phenomenon and temporal fluctuations in high-speed, ultra-high pixels-per-inch liquid crystal on silicon phase modulator

Jhou-Pu Yang, Feng-Ying Wu, Pei-Sin Wang, and Huang-Ming Philip Chen
Opt. Express 27(22) 32168-32183 (2019)

Digital phase-only liquid crystal on silicon device with enhanced optical efficiency

H. Yang and D. P. Chu
OSA Continuum 2(8) 2445-2459 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  2. T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
    [Crossref]
  3. J. Li, Q. Smithwick, and D. Chu, “Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner,” Opt. Express 26, 17459–17476 (2018).
    [Crossref]
  4. N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
    [Crossref]
  5. J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
    [Crossref]
  6. Y. Huang, E. Liao, R. Chen, and S.-T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8, 2366 (2018).
    [Crossref]
  7. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  8. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12, 1665–1670 (2004).
    [Crossref]
  9. M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photon. Energy 1, 018005 (2010).
    [Crossref]
  10. H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24, 12240–12253 (2016).
    [Crossref]
  11. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
    [Crossref]
  12. F. J. Martínez, A. Márquez, S. Gallego, J. Francés, and I. Pascual, “Extended linear polarimeter to measure retardance and flicker: application to liquid crystal on silicon devices in two working geometries,” Opt. Eng. 53, 014105 (2014).
    [Crossref]
  13. J. García-Márquez, V. López, A. González-Vega, E. Noé, I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, M. J. Yzuel, J. Garcia-Marquez, E. Lopez-Padilla, A. Gonzalez-Vega, and E. Noe-Arias, “Flicker minimization in an LCoS spatial light modulator,” Opt. Express 16, 16711–16722 (2008).
    [Crossref]
  14. H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express 27, 24556–24567 (2019).
    [Crossref]
  15. Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
    [Crossref]
  16. http://www.jasperdisplay.com/products/wafer/jd2552-sp55/ .
  17. P. Velasquez, M. del Mar Sánchez-López, I. Moreno, D. Puerto, and F. Mateos, “Interference birefringent filters fabricated with low cost commercial polymers,” Am. J. Phys. 73, 357–361 (2005).
    [Crossref]
  18. G. Lazarev, P.-J. Chen, J. Strauss, N. Fontaine, and A. Forbes, “Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited],” Opt. Express 27, 16206–16249 (2019).
    [Crossref]
  19. H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
    [Crossref]
  20. M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
    [Crossref]
  21. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg) 2, 237–246 (1969).
  22. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
    [Crossref]
  23. J. D. Briers, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
    [Crossref]
  24. E. Peli, “Contrast in complex images.,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
    [Crossref]
  25. W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Proc. SPIE 10834, 108342A (2018).
    [Crossref]

2019 (2)

2018 (5)

W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Proc. SPIE 10834, 108342A (2018).
[Crossref]

H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
[Crossref]

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

J. Li, Q. Smithwick, and D. Chu, “Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner,” Opt. Express 26, 17459–17476 (2018).
[Crossref]

Y. Huang, E. Liao, R. Chen, and S.-T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8, 2366 (2018).
[Crossref]

2017 (1)

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

2016 (1)

2014 (2)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
[Crossref]

F. J. Martínez, A. Márquez, S. Gallego, J. Francés, and I. Pascual, “Extended linear polarimeter to measure retardance and flicker: application to liquid crystal on silicon devices in two working geometries,” Opt. Eng. 53, 014105 (2014).
[Crossref]

2013 (1)

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

2010 (3)

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photon. Energy 1, 018005 (2010).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

2008 (1)

2005 (1)

P. Velasquez, M. del Mar Sánchez-López, I. Moreno, D. Puerto, and F. Mateos, “Interference birefringent filters fabricated with low cost commercial polymers,” Am. J. Phys. 73, 357–361 (2005).
[Crossref]

2004 (2)

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

1996 (1)

J. D. Briers, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
[Crossref]

1990 (1)

1969 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg) 2, 237–246 (1969).

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref]

Briers, J. D.

J. D. Briers, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
[Crossref]

Campos, J.

Chen, H.-M.

H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
[Crossref]

Chen, J.-S.

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

Chen, P.-J.

Chen, R.

Y. Huang, E. Liao, R. Chen, and S.-T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8, 2366 (2018).
[Crossref]

Chu, D.

Chu, D. P.

H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express 27, 24556–24567 (2019).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

Collings, N.

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

Courtial, J.

Crossland, W. A.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

del Mar Sánchez-López, M.

P. Velasquez, M. del Mar Sánchez-López, I. Moreno, D. Puerto, and F. Mateos, “Interference birefringent filters fabricated with low cost commercial polymers,” Am. J. Phys. 73, 357–361 (2005).
[Crossref]

Fernández, E.

Fontaine, N.

Forbes, A.

Francés, J.

F. J. Martínez, A. Márquez, S. Gallego, J. Francés, and I. Pascual, “Extended linear polarimeter to measure retardance and flicker: application to liquid crystal on silicon devices in two working geometries,” Opt. Eng. 53, 014105 (2014).
[Crossref]

Gallego, S.

F. J. Martínez, A. Márquez, S. Gallego, J. Francés, and I. Pascual, “Extended linear polarimeter to measure retardance and flicker: application to liquid crystal on silicon devices in two working geometries,” Opt. Eng. 53, 014105 (2014).
[Crossref]

Garcia-Marquez, J.

García-Márquez, J.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg) 2, 237–246 (1969).

Gibson, G.

Gonzalez-Vega, A.

González-Vega, A.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Hsu, Z.-N.

H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
[Crossref]

Huang, Y.

H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
[Crossref]

Y. Huang, E. Liao, R. Chen, and S.-T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8, 2366 (2018).
[Crossref]

Iemmi, C.

Jeziorska-Chapman, A. M.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

Jordan, P.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photon. Energy 1, 018005 (2010).
[Crossref]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Kozacki, T.

W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Proc. SPIE 10834, 108342A (2018).
[Crossref]

Laczik, Z. J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Lazarev, G.

Leach, J.

Li, J.

Liao, E.

Y. Huang, E. Liao, R. Chen, and S.-T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8, 2366 (2018).
[Crossref]

Lizana, A.

López, V.

Lopez-Padilla, E.

Mao, L.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Marquez, A.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Márquez, A.

F. J. Martínez, A. Márquez, S. Gallego, J. Francés, and I. Pascual, “Extended linear polarimeter to measure retardance and flicker: application to liquid crystal on silicon devices in two working geometries,” Opt. Eng. 53, 014105 (2014).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, E. Noé, I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, M. J. Yzuel, J. Garcia-Marquez, E. Lopez-Padilla, A. Gonzalez-Vega, and E. Noe-Arias, “Flicker minimization in an LCoS spatial light modulator,” Opt. Express 16, 16711–16722 (2008).
[Crossref]

Martínez, F. J.

F. J. Martínez, A. Márquez, S. Gallego, J. Francés, and I. Pascual, “Extended linear polarimeter to measure retardance and flicker: application to liquid crystal on silicon devices in two working geometries,” Opt. Eng. 53, 014105 (2014).
[Crossref]

Mateos, F.

P. Velasquez, M. del Mar Sánchez-López, I. Moreno, D. Puerto, and F. Mateos, “Interference birefringent filters fabricated with low cost commercial polymers,” Am. J. Phys. 73, 357–361 (2005).
[Crossref]

Matoba, O.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Milne, W. I.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

Moore, J.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

Moreno, I.

Noé, E.

Noe-Arias, E.

Otani, R.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Padgett, M. J.

Pascual, I.

F. J. Martínez, A. Márquez, S. Gallego, J. Francés, and I. Pascual, “Extended linear polarimeter to measure retardance and flicker: application to liquid crystal on silicon devices in two working geometries,” Opt. Eng. 53, 014105 (2014).
[Crossref]

Peli, E.

Penty, R. V.

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

Pivnenko, M.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

Puerto, D.

P. Velasquez, M. del Mar Sánchez-López, I. Moreno, D. Puerto, and F. Mateos, “Interference birefringent filters fabricated with low cost commercial polymers,” Am. J. Phys. 73, 357–361 (2005).
[Crossref]

Quan, X.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Reufer, M.

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

Robertson, B.

Safer, M.

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg) 2, 237–246 (1969).

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref]

Sinclair, G.

Smithwick, Q.

J. Li, Q. Smithwick, and D. Chu, “Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner,” Opt. Express 26, 17459–17476 (2018).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

Strauss, J.

Sumpf, B.

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

Tahara, T.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Takaki, Y.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Vaquero Caballero, F.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Velasquez, P.

P. Velasquez, M. del Mar Sánchez-López, I. Moreno, D. Puerto, and F. Mateos, “Interference birefringent filters fabricated with low cost commercial polymers,” Am. J. Phys. 73, 357–361 (2005).
[Crossref]

Wang, M.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref]

Wilkinson, P.

Wu, S.-T.

H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
[Crossref]

Y. Huang, E. Liao, R. Chen, and S.-T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8, 2366 (2018).
[Crossref]

Yang, H.

Yang, J.-P.

H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
[Crossref]

Yao, E.

Ye, Y.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Yen, H.-T.

H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
[Crossref]

You, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
[Crossref]

Yzuel, M. J.

Zaperty, W.

W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Proc. SPIE 10834, 108342A (2018).
[Crossref]

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

Zhao, H.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Zong, L.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Am. J. Phys. (1)

P. Velasquez, M. del Mar Sánchez-López, I. Moreno, D. Puerto, and F. Mateos, “Interference birefringent filters fabricated with low cost commercial polymers,” Am. J. Phys. 73, 357–361 (2005).
[Crossref]

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Appl. Sci. (2)

H.-M. Chen, J.-P. Yang, H.-T. Yen, Z.-N. Hsu, Y. Huang, and S.-T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8, 2323 (2018).
[Crossref]

Y. Huang, E. Liao, R. Chen, and S.-T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8, 2366 (2018).
[Crossref]

IEEE Trans. Image Process (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref]

J. Biomed. Opt. (1)

J. D. Briers, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–180 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Photon. Energy (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photon. Energy 1, 018005 (2010).
[Crossref]

Light Sci. Appl. (1)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
[Crossref]

Microscopy (1)

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Eng. (1)

F. J. Martínez, A. Márquez, S. Gallego, J. Francés, and I. Pascual, “Extended linear polarimeter to measure retardance and flicker: application to liquid crystal on silicon devices in two working geometries,” Opt. Eng. 53, 014105 (2014).
[Crossref]

Opt. Express (6)

Optik (Stuttg) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg) 2, 237–246 (1969).

Photonics (1)

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Proc. SPIE (4)

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. I. Milne, W. A. Crossland, and D. P. Chu, “High quality assembly of liquid crystal on silicon (LCOS) devices for phase-only holography,” Proc. SPIE 7618, 761815 (2010).
[Crossref]

N. Collings, M. Reufer, R. V. Penty, B. Sumpf, M. Safer, D. P. Chu, and W. A. Crossland, “Holographic projection based on tapered lasers and nematic liquid crystal on silicon devices,” Proc. SPIE 7775, 777504 (2010).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Proc. SPIE 10834, 108342A (2018).
[Crossref]

Other (1)

http://www.jasperdisplay.com/products/wafer/jd2552-sp55/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Crossed-polarizer-based characterization system for phase-only LCoS devices, where P1 and P2 are the double Glan-Taylor polarizers, $\lambda /{2}$ is the half-wave plate, BS is the beam splitter, and L1 is the lens. The LCoS SLM is mounted on an ${ X}{-}{ Y}$ motorized stage.
Fig. 2.
Fig. 2. (a) PWM driving waveform at gray level 150; (b) corresponding intensity variation as measured, and (c) calculated phase fluctuation.
Fig. 3.
Fig. 3. PWM signals with different pulse arrangement but the same RMS voltage level.
Fig. 4.
Fig. 4. (a) Default driving waveform; (b) driving waveform optimized in this work.
Fig. 5.
Fig. 5. (a) Normalized mean intensity profiles as measured, and the peak-to-peak intensity profiles; (b) phase modulation depth profiles before and after optimization; (c) corresponding phase flickers.
Fig. 6.
Fig. 6. Phase fluctuations at phase depth around ${1.26}\pi $ (a) before and (b) after optimization on phase linearity and phase flicker; (c) separation probability of staying within one phase level for 6-bit to 12-bit modulation with default driving patterns and the ones optimized in this work.
Fig. 7.
Fig. 7. Simulation process of reconstructing the image from the phase-only hologram calculated by the GS algorithm.
Fig. 8.
Fig. 8. Procedure of adding phase nonlinearity and phase flicker to the phase-only hologram.
Fig. 9.
Fig. 9. (a) Target image; (b)–(d) reconstructed images of different phase linearities and phase flickers listed in Table 2.
Fig. 10.
Fig. 10. Comparison of MSE (for 8-bit gray-scale image) and speckle contrast values.
Fig. 11.
Fig. 11. Optically reconstructed image (a) before and (b) after applying optimization on phase linearity and phase flicker (with the letter “C” zoomed in a small window).
Fig. 12.
Fig. 12. Noticeable peak in the flicker curve shown in Fig. 5(c) and its corresponding intensity curve.

Tables (2)

Tables Icon

Table 1. Comparison of the Phase Flicker Performance of Digitally Driven LCoS Devices

Tables Icon

Table 2. Phase Control Accuracy

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

V = T O N T V O N 2 + T O F F T V O F F 2 .
M = e j ( π ( n x + n o ) d λ ) ( e j δ 2 0 0 e j δ 2 ) ,
δ = 2 π ( n x n o ) 2 d λ .
J o u t = R ( + 45 ) P 2 R ( 45 ) M P 1 P 0 J i n ,
P 0 = 1 2 ( 1 1 1 1 ) .
P 1 = ( 1 0 0 0 ) , P 2 = ( 1 0 0 0 ) .
R ( θ ) = ( cos θ sin θ sin θ cos θ ) .
J i n = ( 1 0 ) .
I = sin 2 δ 2 .
δ = 2 sin 1 I n o r ,
P = 1 2 π σ 2 μ ϕ 2 μ + ϕ 2 e ( x μ ) 2 2 σ 2 d x × 100 % ,
ϕ = 2 π 2 N .
Δ δ = d δ d I Δ I = 1 1 2 sin δ Δ I = 2 sin δ Δ I .

Metrics