Abstract

Beam steering in lidar applications presents an important engineering problem, as researchers seek to achieve the highest possible field of view with low energy cost and rapid refresh rate. Non-mechanical beam-steering technologies that exist today are known to achieve a low energy cost and rapid refresh rate, but they have a narrow angular range. A method by which the diffraction angle from a beam-steering device may be increased to cover a $ 4\pi $ sr solid angle is presented. Multiple holograms are recorded in the same volume hologram in a process called multiplexing. This multiplexed hologram can diffract light over a solid angle of $ 2\pi $ sr. To increase the angular coverage up to $ 4\pi $ sr, a hemispheric lens is attached to the volume hologram. Secondary holographic optical elements coated on the lens surface further diffract the light, directing it to a theoretical maximum of $ 4\pi $ sr. An early prototype demonstrates five distinct diffraction angles, ranging from 20° to 150°, which covers a solid angle around 90% of the entire sphere while maintaining beam collimation.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide beam steering by slow-light waveguide gratings and a prism lens

Hiroyuki Ito, Yuma Kusunoki, Jun Maeda, Daichi Akiyama, Naoya Kodama, Hiroshi Abe, Ryo Tetsuya, and Toshihiko Baba
Optica 7(1) 47-52 (2020)

Integrated phased array for wide-angle beam steering

Ami Yaacobi, Jie Sun, Michele Moresco, Gerald Leake, Douglas Coolbaugh, and Michael R. Watts
Opt. Lett. 39(15) 4575-4578 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. Maksymova, C. Steger, and N. Druml, “Review of lidar sensor data acquisition and compression for automotive applications,” in Proceedings of Eurosensors (2018).
  2. B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
    [Crossref]
  3. B. Kim and S. Gibson, “Adaptive control of a tilt mirror for laser beam steering,” in Proceedings of the 2004 American Control Conference (2004), Vol. 4, pp. 3417–3421.
  4. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20, 11863–11881 (2012).
    [Crossref]
  5. A. R. Cho, A. Han, S. Ju, H. Jeong, J.-H. Park, I. Kim, J.-U. Bu, and C.-H. Ji, “Electromagnetic biaxial microscanner with mechanical amplification at resonance,” Opt. Express 23, 16792–16802 (2015).
    [Crossref]
  6. R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
    [Crossref]
  7. A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” Proc. SPIE 9832, 98320M (2016).
    [Crossref]
  8. V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in lidar applications,” Proc. SPIE 10191, 101910N (2017).
    [Crossref]
  9. J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
    [Crossref]
  10. P.-A. Blanche, C. Bigler, C. Draper, J. McDonald, and K. Sarma, “Holography for automotive applications: from HUD to lidar,” Proc. SPIE 10757, 107570B (2018).
    [Crossref]
  11. G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
    [Crossref]
  12. D. M. Benton, “Non-mechanical beam steering: ways and means,” Proc. SPIE 10797, 107970H (2018).
    [Crossref]
  13. Q. Niu, C. Wang, H. Shi, L. Li, and D. Wang, “Development status of optical phased array beam steering technology,” Proc. SPIE 11052, 110521P (2019).
    [Crossref]
  14. W. H. Bragg and W. L. Bragg, “The reflection of x-rays by crystals,” Proc. R. Soc. London Ser. A 88, 428–438 (1913).
    [Crossref]
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  16. P. Zhu, X. Liu, and Z. Xu, “Color holography using the angular selectivity of volume recording media,” Appl. Opt. 34, 842–845 (1995).
    [Crossref]
  17. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998).
    [Crossref]
  18. S. H. Lin, K. Y. Hsu, W.-Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453 (2000).
    [Crossref]
  19. O. Beyer, I. Nee, F. Havermeyer, and K. Buse, “Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate),” Appl. Opt. 42, 30–37 (2003).
    [Crossref]
  20. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
    [Crossref]
  21. E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
    [Crossref]
  22. J. M. Castro, E. de Leon, J. K. Barton, and R. K. Kostuk, “Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing,” Appl. Opt. 50, 170–176 (2011).
    [Crossref]
  23. Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PMMA-PQ photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. B 30, 3298–3307 (2013).
    [Crossref]
  24. Y.-F. Chen, J.-H. Lin, S. H. Lin, K. Y. Hsu, and W.-T. Whang, “PQ:DMNA/PMMA photopolymer having amazing volume holographic recording at wavelength of insignificant absorption,” Opt. Lett. 38, 2056–2058 (2013).
    [Crossref]
  25. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PMMA-PQ for spectral-spatial imaging filters,” Opt. Lett. 33, 566–568 (2008).
    [Crossref]
  26. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
    [Crossref]

2019 (1)

Q. Niu, C. Wang, H. Shi, L. Li, and D. Wang, “Development status of optical phased array beam steering technology,” Proc. SPIE 11052, 110521P (2019).
[Crossref]

2018 (4)

J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
[Crossref]

P.-A. Blanche, C. Bigler, C. Draper, J. McDonald, and K. Sarma, “Holography for automotive applications: from HUD to lidar,” Proc. SPIE 10757, 107570B (2018).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

D. M. Benton, “Non-mechanical beam steering: ways and means,” Proc. SPIE 10797, 107970H (2018).
[Crossref]

2017 (2)

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
[Crossref]

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in lidar applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

2016 (1)

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

2015 (1)

2013 (2)

2012 (2)

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20, 11863–11881 (2012).
[Crossref]

2011 (1)

2009 (1)

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[Crossref]

2008 (2)

2004 (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

2003 (1)

2000 (1)

1998 (1)

1995 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

1913 (1)

W. H. Bragg and W. L. Bragg, “The reflection of x-rays by crystals,” Proc. R. Soc. London Ser. A 88, 428–438 (1913).
[Crossref]

Aoyagi, I.

Atwood, B. H.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Bai, X.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Barbastathis, G.

Barton, J. K.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

Benton, D. M.

D. M. Benton, “Non-mechanical beam steering: ways and means,” Proc. SPIE 10797, 107970H (2018).
[Crossref]

Beyer, O.

Bigler, C.

P.-A. Blanche, C. Bigler, C. Draper, J. McDonald, and K. Sarma, “Holography for automotive applications: from HUD to lidar,” Proc. SPIE 10757, 107570B (2018).
[Crossref]

Blanche, P.-A.

P.-A. Blanche, C. Bigler, C. Draper, J. McDonald, and K. Sarma, “Holography for automotive applications: from HUD to lidar,” Proc. SPIE 10757, 107570B (2018).
[Crossref]

Bragg, W. H.

W. H. Bragg and W. L. Bragg, “The reflection of x-rays by crystals,” Proc. R. Soc. London Ser. A 88, 428–438 (1913).
[Crossref]

Bragg, W. L.

W. H. Bragg and W. L. Bragg, “The reflection of x-rays by crystals,” Proc. R. Soc. London Ser. A 88, 428–438 (1913).
[Crossref]

Bu, J.-U.

Buse, K.

Castro, J. M.

Chen, G.

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

Chen, W.-Z.

Chen, Y.-F.

Cho, A. R.

Dammann, J. F.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

de Leon, E.

Draper, C.

P.-A. Blanche, C. Bigler, C. Draper, J. McDonald, and K. Sarma, “Holography for automotive applications: from HUD to lidar,” Proc. SPIE 10757, 107570B (2018).
[Crossref]

Druml, N.

I. Maksymova, C. Steger, and N. Druml, “Review of lidar sensor data acquisition and compression for automotive applications,” in Proceedings of Eurosensors (2018).

Espinoza, A.

J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
[Crossref]

Gelsinger, P. J.

Gibson, S.

B. Kim and S. Gibson, “Adaptive control of a tilt mirror for laser beam steering,” in Proceedings of the 2004 American Control Conference (2004), Vol. 4, pp. 3417–3421.

Gin, A.

J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
[Crossref]

Giza, M. M.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Gleeson, M. R.

Guo, J.

Han, A.

Havermeyer, F.

Hellman, B.

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
[Crossref]

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

Hsu, K. Y.

Hu, F.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in lidar applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Ito, K.

Jeong, H.

Ji, C.-H.

Ju, S.

Kagami, M.

Kashin, O.

Kasturi, A.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in lidar applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Kato, S.

Kim, B.

B. Kim and S. Gibson, “Adaptive control of a tilt mirror for laser beam steering,” in Proceedings of the 2004 American Control Conference (2004), Vol. 4, pp. 3417–3421.

Kim, I.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Kostuk, R. K.

Kowarschik, R.

Krul, L. P.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[Crossref]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
[Crossref]

Lawler, W. B.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Li, H.

Li, L.

Q. Niu, C. Wang, H. Shi, L. Li, and D. Wang, “Development status of optical phased array beam steering technology,” Proc. SPIE 11052, 110521P (2019).
[Crossref]

Lin, J.-H.

Lin, S. H.

Liu, X.

Luo, Y.

Mahilny, U. V.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[Crossref]

Maksymova, I.

I. Maksymova, C. Steger, and N. Druml, “Review of lidar sensor data acquisition and compression for automotive applications,” in Proceedings of Eurosensors (2018).

Marmysh, D. N.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[Crossref]

Matsubara, H.

Matusevich, A.

Matusevich, V.

Matusevich, Y. I.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[Crossref]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
[Crossref]

McDonald, J.

P.-A. Blanche, C. Bigler, C. Draper, J. McDonald, and K. Sarma, “Holography for automotive applications: from HUD to lidar,” Proc. SPIE 10757, 107570B (2018).
[Crossref]

Milanovic, V.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in lidar applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Moss, R.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Nee, I.

Niclass, C.

Niu, Q.

Q. Niu, C. Wang, H. Shi, L. Li, and D. Wang, “Development status of optical phased array beam steering technology,” Proc. SPIE 11052, 110521P (2019).
[Crossref]

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

Park, J.-H.

Psaltis, D.

Qi, Y.

Quesada, E.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Rodriguez, J.

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
[Crossref]

Sarma, K.

P.-A. Blanche, C. Bigler, C. Draper, J. McDonald, and K. Sarma, “Holography for automotive applications: from HUD to lidar,” Proc. SPIE 10757, 107570B (2018).
[Crossref]

Sheridan, J. T.

Shi, H.

Q. Niu, C. Wang, H. Shi, L. Li, and D. Wang, “Development status of optical phased array beam steering technology,” Proc. SPIE 11052, 110521P (2019).
[Crossref]

Smith, B.

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
[Crossref]

Soga, M.

Solomatine, I.

Stann, B. L.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Steckman, G. J.

Steger, C.

I. Maksymova, C. Steger, and N. Druml, “Review of lidar sensor data acquisition and compression for automotive applications,” in Proceedings of Eurosensors (2018).

Sudharsanan, R.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Takashima, Y.

J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25, 14732–14745 (2017).
[Crossref]

Tolstik, E.

Wang, C.

Q. Niu, C. Wang, H. Shi, L. Li, and D. Wang, “Development status of optical phased array beam steering technology,” Proc. SPIE 11052, 110521P (2019).
[Crossref]

Wang, D.

Q. Niu, C. Wang, H. Shi, L. Li, and D. Wang, “Development status of optical phased array beam steering technology,” Proc. SPIE 11052, 110521P (2019).
[Crossref]

Whang, W. T.

Whang, W.-T.

Winkler, A.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[Crossref]

Xu, Z.

Yang, J.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in lidar applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Yuan, P.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Zhou, G.

Zhu, P.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

IEEE Photon. Technol. Lett. (1)

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (4)

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

Proc. R. Soc. London Ser. A (1)

W. H. Bragg and W. L. Bragg, “The reflection of x-rays by crystals,” Proc. R. Soc. London Ser. A 88, 428–438 (1913).
[Crossref]

Proc. SPIE (8)

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in lidar applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

J. Rodriguez, B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Multi-beam and single-chip lidar with discrete beam steering by digital micromirror device,” Proc. SPIE 10526, 105260U (2018).
[Crossref]

P.-A. Blanche, C. Bigler, C. Draper, J. McDonald, and K. Sarma, “Holography for automotive applications: from HUD to lidar,” Proc. SPIE 10757, 107570B (2018).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

D. M. Benton, “Non-mechanical beam steering: ways and means,” Proc. SPIE 10797, 107970H (2018).
[Crossref]

Q. Niu, C. Wang, H. Shi, L. Li, and D. Wang, “Development status of optical phased array beam steering technology,” Proc. SPIE 11052, 110521P (2019).
[Crossref]

Other (2)

I. Maksymova, C. Steger, and N. Druml, “Review of lidar sensor data acquisition and compression for automotive applications,” in Proceedings of Eurosensors (2018).

B. Kim and S. Gibson, “Adaptive control of a tilt mirror for laser beam steering,” in Proceedings of the 2004 American Control Conference (2004), Vol. 4, pp. 3417–3421.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Increasing the thickness of the holographic film increases the angular selectivity of the recorded holograms when paired with a proportional decrease in refractive index modulation. For angular selectivity less than 0.1°, the film thickness needs to be at least 200 µm.
Fig. 2.
Fig. 2. Collimated light is shined through a beam splitter. Part of the light is redirected to the detector to serve as a reference signal, while most of it passes to the SLM. The SLM displays a diffraction pattern that steers the beam in the desired direction and reflects it back into the beam splitter. From the beam splitter, the light diffracted by the SLM is redirected to a high-angular-selectivity, multiplexed, volume hologram. This hologram diffracts the incident light over a $ 2\pi $ sr solid angle inside a hemispheric lens according to the incidence angle. On the convex surface of the hemispheric lens, HOEs are recorded to diffract light at an even broader angle and counteract the optical power of the hemispheric surface. The returning light follows a similar path through the holographic shell, hemispheric lens, and multiplexed hologram to arrive at the detector. (a) Theoretical layout of beam-steering system. (b) Real layout of beam-steering system.
Fig. 3.
Fig. 3. Recording configuration for multiplexed injection hologram. Gratings are recorded into the material with 10 s dark-delay time between exposures. (a) Recording configuration for multiplexed injection recording. All beams are shown at once, but each grating was recorded individually. (b) Real table layout for the multiplexed injection recording. Between recordings, the rotation stage was turned by 0.375° and the mirrors were removed, in order.
Fig. 4.
Fig. 4. Holograms are recorded on the hemisphere surface with a diverging source beam and a collimated beam incident at the desired diffraction angle. The reference beam is a diverging beam that propagates toward the hemisphere surface where the focal point is the same distance as a collimated beam exiting the hemispheric lens. The object beam is collimated and propagates from the desired diffraction direction. (a) Theoretical setup for shell hologram recording. (b) Real setup for shell hologram recording.
Fig. 5.
Fig. 5. Holograms recorded with the geometry shown in Fig. 4 will diffract collimated light from the hemisphere surface. (a) 0° to 20°. (b) 20° to 45°. (c) 40° to 90°. (d) 60° to 135°. (e) 80° to 150°.
Fig. 6.
Fig. 6. Relative intensity values for multiplexed hologram at 20°, 40°, 60°, and 80° observation angles.
Fig. 7.
Fig. 7. CWT curve fitting of observed DE from multiplexed PQ/PMMA. (a) Grating 1 curve fitting. (b) Grating 2 curve fitting. (c) Grating 3 curve fitting. (d) Grating 4 curve fitting.
Fig. 8.
Fig. 8. Relative DE values for light diffracted by the multiplexed hologram and hemispheric shell holograms. Observation angles are 45°, 90°, 135°, and 150°.
Fig. 9.
Fig. 9. Taking the difference between the detector signal with and without the beam-steering arm blocked shows that the return signal from the beam-steering system is detected 31.4 ns after the reference pulse.

Tables (3)

Tables Icon

Table 1. System Diffraction Angles a

Tables Icon

Table 2. Effective Grating Thickness and Refractive Index Modulation of Each Multiplexed Grating in the Thick Volume HOE

Tables Icon

Table 3. Power Budget for Demonstrator a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin θ B = m λ 0 / n 2 Λ ,
d η T E d d = 2 π Δ n λ cos θ i sin ( π Δ n d λ cos θ i ) cos ( π Δ n d λ cos θ i ) ,
η = sin π δ n d λ cos θ 0 2 ,

Metrics