Abstract

This paper presents CHIMERA, a third-generation digital holographic printing system that solves the known problems of the two previous generations. This holoprinter is based on the use of low-power RGB continuous lasers combined with the ultrafine-grain silver-halide material Ultimate U04 and is capable of printing at a frequency equal to or greater than 25 hogels per second, full-color, 120° full-parallax digital reflection holograms or holographic optical elements with a size of up to $60 \times 80\,\,{\rm{cm}}$ and a hogel size ranging from 250 to 500 µm. A 3D scanner using a 4K video camera has been specially designed for scanning real objects printable on CHIMERA, which offers new achievements in terms of color rendition, palette, and accuracy and opens new perspectives for digital holography applications and holography in general.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color holography to produce highly realistic three-dimensional images

Hans I. Bjelkhagen and Evangelos Mirlis
Appl. Opt. 47(4) A123-A133 (2008)

Resolution enhancement of holographic printer using a hogel overlapping method

Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, and Byoungho Lee
Opt. Express 21(12) 14047-14055 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  2. Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave field of its scattered radiation,” Opt. Spectrosc. 18, 152–157 (1965).
  3. H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-realistic imaging: advanced techniques in analogue and digital colour holography (CRC press, 2016).
  4. A. M. Sánchez, L. M. Giraldo, and D. V. Prieto, “Monocolor and color holography of pre-Hispanic Colombian goldwork: a way of Colombian heritage appropriation,” Proc. SPIE 10558, 1055803 (2018).
    [Crossref]
  5. T. Voslion and A. Escarguel, “An easy physics outreach and teaching tool for holography,” J. Phys. Conf. Ser. 415, 012063 (2013).
  6. H. Zheng, G. Sun, and Y. Yu, “A review of holographic printing technologies,” Laser Optoelectron. Prog. 11, 49 (2012).
  7. M. Lucente, “The first 20 years of holographic video—and the next 20,” in SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment (2011), pp. 21–23.
  8. J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
    [Crossref]
  9. M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
    [Crossref]
  10. M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. dissertation (Massachusetts Institute of Technology, 1994).
  11. M. Klug, M. Holdback, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” U.S. patentUS6330088B1 (11December2001).
  12. U. S. Rhee, H. J. Caulfield, C. S. Vikram, and J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
    [Crossref]
  13. D. C. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Method and apparatus to print holograms,” Lithuanian patentLT4842 (1999).
  14. D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
    [Crossref]
  15. “Slavich,” 2019, https://www.slavich.com (July).
  16. Y. Gentet and P. Gentet, “Ultimate emulsion and its applications: a laboratory-made silver halide emulsion of optimized quality for monochromatic pulsed and full-color holography,” Proc. SPIE 4149, 56–62 (2000).
    [Crossref]
  17. Covestro Deutschland AG, Bayfol HX200 Datasheet (2018).
  18. P. Gentet, Y. Gentet, and S. H. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” International Conference on Emerging Trends & Innovation in ICT (ICEI) 1, 162–166 (2017).
  19. J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
    [Crossref]
  20. P. Gentet, Y. Gentet, and S. H. Lee, “New LED’s wavelengths improve drastically the quality of illumination of pulsed digital holograms,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2017), pp. M3A-4.

2018 (2)

A. M. Sánchez, L. M. Giraldo, and D. V. Prieto, “Monocolor and color holography of pre-Hispanic Colombian goldwork: a way of Colombian heritage appropriation,” Proc. SPIE 10558, 1055803 (2018).
[Crossref]

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

2017 (2)

P. Gentet, Y. Gentet, and S. H. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” International Conference on Emerging Trends & Innovation in ICT (ICEI) 1, 162–166 (2017).

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
[Crossref]

2013 (1)

T. Voslion and A. Escarguel, “An easy physics outreach and teaching tool for holography,” J. Phys. Conf. Ser. 415, 012063 (2013).

2012 (1)

H. Zheng, G. Sun, and Y. Yu, “A review of holographic printing technologies,” Laser Optoelectron. Prog. 11, 49 (2012).

2011 (1)

D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[Crossref]

2000 (1)

Y. Gentet and P. Gentet, “Ultimate emulsion and its applications: a laboratory-made silver halide emulsion of optimized quality for monochromatic pulsed and full-color holography,” Proc. SPIE 4149, 56–62 (2000).
[Crossref]

1995 (2)

M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
[Crossref]

U. S. Rhee, H. J. Caulfield, C. S. Vikram, and J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[Crossref]

1965 (1)

Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave field of its scattered radiation,” Opt. Spectrosc. 18, 152–157 (1965).

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Bakanas, R. J.

D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[Crossref]

Bjelkhagen, H.

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-realistic imaging: advanced techniques in analogue and digital colour holography (CRC press, 2016).

Brotherton-Ratcliffe, D.

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-realistic imaging: advanced techniques in analogue and digital colour holography (CRC press, 2016).

Brotherton-Ratcliffe, D. C.

D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[Crossref]

D. C. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Method and apparatus to print holograms,” Lithuanian patentLT4842 (1999).

Caulfield, H. J.

Chen, Y.

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Denisyuk, Y. N.

Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave field of its scattered radiation,” Opt. Spectrosc. 18, 152–157 (1965).

Endoh, H.

M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
[Crossref]

Escarguel, A.

T. Voslion and A. Escarguel, “An easy physics outreach and teaching tool for holography,” J. Phys. Conf. Ser. 415, 012063 (2013).

Ferdman, A.

M. Klug, M. Holdback, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” U.S. patentUS6330088B1 (11December2001).

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Gentet, P.

P. Gentet, Y. Gentet, and S. H. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” International Conference on Emerging Trends & Innovation in ICT (ICEI) 1, 162–166 (2017).

Y. Gentet and P. Gentet, “Ultimate emulsion and its applications: a laboratory-made silver halide emulsion of optimized quality for monochromatic pulsed and full-color holography,” Proc. SPIE 4149, 56–62 (2000).
[Crossref]

P. Gentet, Y. Gentet, and S. H. Lee, “New LED’s wavelengths improve drastically the quality of illumination of pulsed digital holograms,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2017), pp. M3A-4.

Gentet, Y.

P. Gentet, Y. Gentet, and S. H. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” International Conference on Emerging Trends & Innovation in ICT (ICEI) 1, 162–166 (2017).

Y. Gentet and P. Gentet, “Ultimate emulsion and its applications: a laboratory-made silver halide emulsion of optimized quality for monochromatic pulsed and full-color holography,” Proc. SPIE 4149, 56–62 (2000).
[Crossref]

P. Gentet, Y. Gentet, and S. H. Lee, “New LED’s wavelengths improve drastically the quality of illumination of pulsed digital holograms,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2017), pp. M3A-4.

Giraldo, L. M.

A. M. Sánchez, L. M. Giraldo, and D. V. Prieto, “Monocolor and color holography of pre-Hispanic Colombian goldwork: a way of Colombian heritage appropriation,” Proc. SPIE 10558, 1055803 (2018).
[Crossref]

Grichine, M.

D. C. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Method and apparatus to print holograms,” Lithuanian patentLT4842 (1999).

Holdback, M.

M. Klug, M. Holdback, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” U.S. patentUS6330088B1 (11December2001).

Huang, Y.

Iwata, F.

M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
[Crossref]

Jiang, X.

Klug, M.

M. Klug, M. Holdback, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” U.S. patentUS6330088B1 (11December2001).

Koyama, T.

M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
[Crossref]

Kuchin, J.

D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[Crossref]

Lee, S. H.

P. Gentet, Y. Gentet, and S. H. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” International Conference on Emerging Trends & Innovation in ICT (ICEI) 1, 162–166 (2017).

P. Gentet, Y. Gentet, and S. H. Lee, “New LED’s wavelengths improve drastically the quality of illumination of pulsed digital holograms,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2017), pp. M3A-4.

Lucente, M.

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. dissertation (Massachusetts Institute of Technology, 1994).

M. Lucente, “The first 20 years of holographic video—and the next 20,” in SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment (2011), pp. 21–23.

Nikolskij, A.

D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[Crossref]

Ohyama, N.

M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
[Crossref]

Pileckas, J.

D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[Crossref]

Prieto, D. V.

A. M. Sánchez, L. M. Giraldo, and D. V. Prieto, “Monocolor and color holography of pre-Hispanic Colombian goldwork: a way of Colombian heritage appropriation,” Proc. SPIE 10558, 1055803 (2018).
[Crossref]

Rhee, U. S.

Rodin, A.

D. C. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Method and apparatus to print holograms,” Lithuanian patentLT4842 (1999).

Sánchez, A. M.

A. M. Sánchez, L. M. Giraldo, and D. V. Prieto, “Monocolor and color holography of pre-Hispanic Colombian goldwork: a way of Colombian heritage appropriation,” Proc. SPIE 10558, 1055803 (2018).
[Crossref]

Shamir, J.

Su, J.

Sun, G.

H. Zheng, G. Sun, and Y. Yu, “A review of holographic printing technologies,” Laser Optoelectron. Prog. 11, 49 (2012).

Takahashi, S.

M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
[Crossref]

Vergnes, F. M.

D. C. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Method and apparatus to print holograms,” Lithuanian patentLT4842 (1999).

Vikram, C. S.

Voslion, T.

T. Voslion and A. Escarguel, “An easy physics outreach and teaching tool for holography,” J. Phys. Conf. Ser. 415, 012063 (2013).

Yamaguchi, M.

M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
[Crossref]

Yan, X.

Yu, Y.

H. Zheng, G. Sun, and Y. Yu, “A review of holographic printing technologies,” Laser Optoelectron. Prog. 11, 49 (2012).

Yuan, Q.

Zacharovas, S. J.

D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[Crossref]

Zhang, T.

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Zheng, H.

H. Zheng, G. Sun, and Y. Yu, “A review of holographic printing technologies,” Laser Optoelectron. Prog. 11, 49 (2012).

Appl. Opt. (1)

Appl. Sci. (1)

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

International Conference on Emerging Trends & Innovation in ICT (ICEI) (1)

P. Gentet, Y. Gentet, and S. H. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” International Conference on Emerging Trends & Innovation in ICT (ICEI) 1, 162–166 (2017).

J. Phys. Conf. Ser. (1)

T. Voslion and A. Escarguel, “An easy physics outreach and teaching tool for holography,” J. Phys. Conf. Ser. 415, 012063 (2013).

Laser Optoelectron. Prog. (1)

H. Zheng, G. Sun, and Y. Yu, “A review of holographic printing technologies,” Laser Optoelectron. Prog. 11, 49 (2012).

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Opt. Eng. (1)

D. C. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikolskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[Crossref]

Opt. Express (1)

Opt. Spectrosc. (1)

Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave field of its scattered radiation,” Opt. Spectrosc. 18, 152–157 (1965).

Proc. SPIE (3)

M. Yamaguchi, T. Koyama, H. Endoh, N. Ohyama, S. Takahashi, and F. Iwata, “Development of full-parallax holoprinter,” Proc. SPIE 2406, 50–56 (1995).
[Crossref]

A. M. Sánchez, L. M. Giraldo, and D. V. Prieto, “Monocolor and color holography of pre-Hispanic Colombian goldwork: a way of Colombian heritage appropriation,” Proc. SPIE 10558, 1055803 (2018).
[Crossref]

Y. Gentet and P. Gentet, “Ultimate emulsion and its applications: a laboratory-made silver halide emulsion of optimized quality for monochromatic pulsed and full-color holography,” Proc. SPIE 4149, 56–62 (2000).
[Crossref]

Other (8)

Covestro Deutschland AG, Bayfol HX200 Datasheet (2018).

“Slavich,” 2019, https://www.slavich.com (July).

P. Gentet, Y. Gentet, and S. H. Lee, “New LED’s wavelengths improve drastically the quality of illumination of pulsed digital holograms,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2017), pp. M3A-4.

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. dissertation (Massachusetts Institute of Technology, 1994).

M. Klug, M. Holdback, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” U.S. patentUS6330088B1 (11December2001).

D. C. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Method and apparatus to print holograms,” Lithuanian patentLT4842 (1999).

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-realistic imaging: advanced techniques in analogue and digital colour holography (CRC press, 2016).

M. Lucente, “The first 20 years of holographic video—and the next 20,” in SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment (2011), pp. 21–23.

Supplementary Material (4)

NameDescription
» Visualization 1       Half-parallax digital holographic portraits with a turning table
» Visualization 2       3D scanner in action to record full-parallax still objects
» Visualization 3       Large visible parallax and the color renditions of some CHIMERA holograms
» Visualization 4       Two-channel-grayscale and full-color CHIMERA.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Acquisition of perspective images of a 3D scene for a half-parallax hologram. (b) What will be the printed hologram.
Fig. 2.
Fig. 2. Acquisition of perspective images of a 3D scene for a full-parallax hologram.
Fig. 3.
Fig. 3. Simplified schematic of the optical setup of the CHIMERA printer system.
Fig. 4.
Fig. 4. (a) Recording of half-parallax portraits with a turning table. (b) Full-parallax still objects with the 3D scanner. (c) Full-parallax CG objects with 3DSmax scripting.
Fig. 5.
Fig. 5. Black hogel appears in case of vibration during the recording time.
Fig. 6.
Fig. 6. Ultrarealistic CHIMERA recorded at different scales and resolutions. (a) Extract of a $30 \times 40\,\,{\rm{cm}}$ (500 µm hogel) full-parallax CHIMERA of saturated color objects. (b) Extract of a $20 \times 26\,\,{\rm{cm}}$ (250 µm hogel) full-parallax CHIMERA of natural butterflies. (c) $30 \times 40\,\,{\rm{cm}}$ (500 µm hogel) full-parallax CHIMERA of a scanned museum pastel colors object.
Fig. 7.
Fig. 7. (a) Three different scans transferred into the same CHIMERA. (b) One scan given a two-channel grayscale and full-color CHIMERA.
Fig. 8.
Fig. 8. (a) Same object scanned half-parallax in 2006 and printed with a second-generation printer—made by Yves Gentet—using RGB pulsed laser on (b) U08 and a 2019 full-parallax scan printed on CHIMERA printer on (c) U04.
Fig. 9.
Fig. 9. Three photographs of (a) the real object, (b) the printed CHIMERA, and (c) the Denisyuk hologram. The color of the belt is yellow, and the color of the badge is gold for CHIMERA like the original object but appears orange and silver for the Denisyuk.

Tables (1)

Tables Icon

Table 1. Ultimate 04 Processing Steps

Metrics