Abstract

We propose multiwavelength in-line phase-shifting digital holography with a monochrome image sensor, single reference arm, and no mechanical scanning. We use phase-shifting interferometry selectively extracting wavelength information as a method to obtain multiwavelength object waves separately from wavelength-multiplexed phase-shifted holograms. By exploiting a liquid crystal on silicon spatial light modulator with a wide phase-modulation range as an electrically driven phase shifter in this interferometry, we remove mechanically moving parts during phase shifting. Its effectiveness is experimentally demonstrated.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts

Tatsuki Tahara, Reo Otani, Kaito Omae, Takuya Gotohda, Yasuhiko Arai, and Yasuhiro Takaki
Opt. Express 25(10) 11157-11172 (2017)

Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA)

Tatsuki Tahara, Toru Kaku, and Yasuhiko Arai
Opt. Express 22(24) 29594-29610 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962).
    [Crossref]
  3. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  4. M. K. Kim, ed., Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  5. P. Picart and J.-C. Li, eds., Digital Holography (Wiley, 2013).
  6. T.-C. Poon and J.-P. Liu, eds., Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).
  7. T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
    [Crossref]
  8. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
    [Crossref]
  9. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
    [Crossref]
  10. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
    [Crossref]
  11. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
    [Crossref]
  12. E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38, 1319–1321 (2013).
    [Crossref]
  13. J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
    [Crossref]
  14. T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
    [Crossref]
  15. P. Picart, E. Moisson, and D. Mounier, “Twin-sensitivity measurement by spatial multiplexing of digitally recorded holograms,” Appl. Opt. 42, 1947–1957 (2003).
    [Crossref]
  16. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Some opportunities for vibration analysis with time averaging in digital Fresnel holography,” Appl. Opt. 44, 337–343 (2005).
    [Crossref]
  17. T. Noda, S. Kawata, and S. Minami, “Three-dimensional phase-contrast imaging by a computed-tomography microscope,” Appl. Opt. 31, 670–674 (1992).
    [Crossref]
  18. T. Kozacki, R. Krajewski, and M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17, 13758–13767 (2009).
    [Crossref]
  19. G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
    [Crossref]
  20. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
    [Crossref]
  21. A. Brodoline, N. Rawat, D. Alexandre, N. Cubedo, and M. Grosse, “4D compressive sensing holographic microscopy imaging of small moving objects,” Opt. Lett. 44, 2827–2830 (2019).
    [Crossref]
  22. K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
    [Crossref]
  23. Y. Endo, T. Shimobaba, T. Kakue, and T. Ito, “GPU-accelerated compressive holography,” Opt. Express 24, 8437–8445 (2016).
    [Crossref]
  24. K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
    [Crossref]
  25. Y.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984).
    [Crossref]
  26. J.-M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471–5480 (2008).
    [Crossref]
  27. M. Leclercq and P. Picart, “Method for chromatic error compensation in digital color holographic imaging,” Opt. Express 21, 26456–26467 (2013).
    [Crossref]
  28. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
    [Crossref]
  29. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
    [Crossref]
  30. D. Barada, T. Kiire, J. Sugisaka, S. Kawata, and T. Yatagai, “Simultaneous two-wavelength Doppler phase-shifting digital holography,” Appl. Opt. 50, H237–H244 (2011).
    [Crossref]
  31. A. W. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4, 1667–1668 (1965).
    [Crossref]
  32. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [Crossref]
  33. T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
    [Crossref]
  34. B. Tayebi, Y. Jeong, and J.-H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2019).
    [Crossref]
  35. T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and color three-dimensional imaging using a monochromatic image sensor,” in Digital Holography and Three-Dimensional Imaging (Optical Society of Japan, 2013), paper 13aE9.
  36. T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and its applications to sequential and parallel phase-shifting digital holography,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (online) (Optical Society of America, 2014), paper DM3B.4.
  37. T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
    [Crossref]
  38. T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
    [Crossref]
  39. T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25, 11157–11172 (2017).
    [Crossref]
  40. S. Jeon, J. Lee, J. Cho, S. Jang, Y. Kim, and N. Park, “Wavelength-multiplexed digital holography for quantitative phase measurement using quantum dot film,” Opt. Express 26, 27305–27313 (2018).
    [Crossref]
  41. T. Tahara, R. Otani, and Y. Takaki, “Wavelength-selective phase-shifting digital holography: color three-dimensional imaging ability in relation to bit depth of wavelength-multiplexed holograms,” Appl. Sci. 8, 2410 (2018).
    [Crossref]
  42. T. Kiire, D. Barada, J. Sugisaka, Y. Hayasaki, and T. Yatagai, “Color digital holography using a single monochromatic imaging sensor,” Opt. Lett. 37, 3153–3155 (2012).
    [Crossref]
  43. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
    [Crossref]
  44. F. Wang, S. Zhu, Q. Lu, S. Tang, and S. Han, “Nonlinear control of a piezoelectric actuator system for a phase shift interferometer,” J. Opt. Technol. 86, 296–300 (2019).
    [Crossref]
  45. S. Yoshida, “Measurement of moving objects with phase-shifting digital holography using liquid crystal retarder,” Opt. Commun. 420, 141–146 (2018).
    [Crossref]
  46. S. Yoshida and K. Nakayama, “Two-step method for fast phase-shifting digital holography using ferroelectric liquid crystal retarder,” Opt. Contin. 2, 1908–1916 (2019).
    [Crossref]
  47. R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
    [Crossref]

2019 (4)

A. Brodoline, N. Rawat, D. Alexandre, N. Cubedo, and M. Grosse, “4D compressive sensing holographic microscopy imaging of small moving objects,” Opt. Lett. 44, 2827–2830 (2019).
[Crossref]

B. Tayebi, Y. Jeong, and J.-H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2019).
[Crossref]

F. Wang, S. Zhu, Q. Lu, S. Tang, and S. Han, “Nonlinear control of a piezoelectric actuator system for a phase shift interferometer,” J. Opt. Technol. 86, 296–300 (2019).
[Crossref]

S. Yoshida and K. Nakayama, “Two-step method for fast phase-shifting digital holography using ferroelectric liquid crystal retarder,” Opt. Contin. 2, 1908–1916 (2019).
[Crossref]

2018 (6)

S. Yoshida, “Measurement of moving objects with phase-shifting digital holography using liquid crystal retarder,” Opt. Commun. 420, 141–146 (2018).
[Crossref]

S. Jeon, J. Lee, J. Cho, S. Jang, Y. Kim, and N. Park, “Wavelength-multiplexed digital holography for quantitative phase measurement using quantum dot film,” Opt. Express 26, 27305–27313 (2018).
[Crossref]

T. Tahara, R. Otani, and Y. Takaki, “Wavelength-selective phase-shifting digital holography: color three-dimensional imaging ability in relation to bit depth of wavelength-multiplexed holograms,” Appl. Sci. 8, 2410 (2018).
[Crossref]

K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
[Crossref]

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

2017 (3)

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25, 11157–11172 (2017).
[Crossref]

2016 (1)

2015 (2)

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

2014 (2)

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
[Crossref]

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (2)

2009 (1)

2008 (2)

2007 (1)

2005 (1)

2003 (1)

2002 (1)

2000 (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

1999 (1)

1997 (1)

1995 (1)

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

1992 (1)

1988 (1)

1984 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

1965 (1)

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Akamatsu, T.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Alexandre, D.

Arai, Y.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25, 11157–11172 (2017).
[Crossref]

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and color three-dimensional imaging using a monochromatic image sensor,” in Digital Holography and Three-Dimensional Imaging (Optical Society of Japan, 2013), paper 13aE9.

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and its applications to sequential and parallel phase-shifting digital holography,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (online) (Optical Society of America, 2014), paper DM3B.4.

Arima, Y.

Banerjee, P. P.

Barada, D.

Brodoline, A.

Charrière, F.

Cheng, Y.-Y.

Cho, J.

Colomb, T.

Cubedo, N.

Cuche, E.

Dan, D.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Dändliker, R.

Depeursinge, C.

Desse, J.-M.

Doh, K.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Emery, Y.

Endo, Y.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Gotohda, T.

Gougeon, S.

Grosse, M.

Guo, R.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Han, J.-H.

B. Tayebi, Y. Jeong, and J.-H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2019).
[Crossref]

Han, S.

Hayasaki, Y.

Hoshiba, T.

Indebetouw, G.

Ito, T.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Y. Endo, T. Shimobaba, T. Kakue, and T. Ito, “GPU-accelerated compressive holography,” Opt. Express 24, 8437–8445 (2016).
[Crossref]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
[Crossref]

Jang, S.

Javidi, B.

Jeon, S.

Jeong, Y.

B. Tayebi, Y. Jeong, and J.-H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2019).
[Crossref]

Kakue, T.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Y. Endo, T. Shimobaba, T. Kakue, and T. Ito, “GPU-accelerated compressive holography,” Opt. Express 24, 8437–8445 (2016).
[Crossref]

Kanno, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Kato, J.

Kawai, H.

Kawata, S.

Kiire, T.

Kikunaga, S.

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and its applications to sequential and parallel phase-shifting digital holography,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (online) (Optical Society of America, 2014), paper DM3B.4.

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and color three-dimensional imaging using a monochromatic image sensor,” in Digital Holography and Three-Dimensional Imaging (Optical Society of Japan, 2013), paper 13aE9.

Kim, Y.

Kozacki, T.

Krajewski, R.

Kühn, J.

Kujawinska, M.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Leclercq, M.

Lee, J.

Lei, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Leith, E. N.

Leval, J.

Liu, J.-P.

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

Lohmann, A. W.

Lu, Q.

Marquet, P.

Matoba, O.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Matsumura, T.

Matsushima, K.

Min, J.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Minami, S.

Miura, J.

Moisson, E.

Montfort, F.

Mori, R.

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

Mounier, D.

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Naik, D. N.

Nakahara, S.

Nakayama, K.

S. Yoshida and K. Nakayama, “Two-step method for fast phase-shifting digital holography using ferroelectric liquid crystal retarder,” Opt. Contin. 2, 1908–1916 (2019).
[Crossref]

Nehmetallah, G.

Noda, T.

Ohzu, H.

Omae, K.

Osten, W.

Otani, R.

T. Tahara, R. Otani, and Y. Takaki, “Wavelength-selective phase-shifting digital holography: color three-dimensional imaging ability in relation to bit depth of wavelength-multiplexed holograms,” Appl. Sci. 8, 2410 (2018).
[Crossref]

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25, 11157–11172 (2017).
[Crossref]

Ozawa, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Park, N.

Pedrini, G.

Picart, P.

Poon, T.-C.

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[Crossref]

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Prongué, D.

Quan, X.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Rawat, N.

Sato, Y.

Schilling, B.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Schilling, B. W.

Shimobaba, T.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Y. Endo, T. Shimobaba, T. Kakue, and T. Ito, “GPU-accelerated compressive holography,” Opt. Express 24, 8437–8445 (2016).
[Crossref]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
[Crossref]

Shinoda, K.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[Crossref]

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Sonobe, N.

Storrie, B.

Sugisaka, J.

Suzuki, Y.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[Crossref]

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Tahara, T.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

T. Tahara, R. Otani, and Y. Takaki, “Wavelength-selective phase-shifting digital holography: color three-dimensional imaging ability in relation to bit depth of wavelength-multiplexed holograms,” Appl. Sci. 8, 2410 (2018).
[Crossref]

T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25, 11157–11172 (2017).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and its applications to sequential and parallel phase-shifting digital holography,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (online) (Optical Society of America, 2014), paper DM3B.4.

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and color three-dimensional imaging using a monochromatic image sensor,” in Digital Holography and Three-Dimensional Imaging (Optical Society of Japan, 2013), paper 13aE9.

Takaki, Y.

T. Tahara, R. Otani, and Y. Takaki, “Wavelength-selective phase-shifting digital holography: color three-dimensional imaging ability in relation to bit depth of wavelength-multiplexed holograms,” Appl. Sci. 8, 2410 (2018).
[Crossref]

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25, 11157–11172 (2017).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
[Crossref]

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and color three-dimensional imaging using a monochromatic image sensor,” in Digital Holography and Three-Dimensional Imaging (Optical Society of Japan, 2013), paper 13aE9.

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and its applications to sequential and parallel phase-shifting digital holography,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (online) (Optical Society of America, 2014), paper DM3B.4.

Takeda, M.

Takenouchi, M.

Tang, S.

Tankam, P.

Tayebi, B.

B. Tayebi, Y. Jeong, and J.-H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2019).
[Crossref]

Thalmann, R.

Upatnieks, J.

Wang, F.

Watanabe, E.

Wu, M.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Wu, M. H.

Wyant, J. C.

Yamaguchi, I.

Yan, S.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Yang, Y.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Yao, B.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Yatagai, T.

Yoshida, S.

S. Yoshida and K. Nakayama, “Two-step method for fast phase-shifting digital holography using ferroelectric liquid crystal retarder,” Opt. Contin. 2, 1908–1916 (2019).
[Crossref]

S. Yoshida, “Measurement of moving objects with phase-shifting digital holography using liquid crystal retarder,” Opt. Commun. 420, 141–146 (2018).
[Crossref]

Yu, X.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Zhou, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Zhu, S.

Adv. Opt. Photon. (1)

Appl. Opt. (9)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Appl. Sci. (2)

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

T. Tahara, R. Otani, and Y. Takaki, “Wavelength-selective phase-shifting digital holography: color three-dimensional imaging ability in relation to bit depth of wavelength-multiplexed holograms,” Appl. Sci. 8, 2410 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Tayebi, Y. Jeong, and J.-H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2019).
[Crossref]

J. Opt. (3)

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Technol. (1)

Microscopy (1)

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Opt. Commun. (2)

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

S. Yoshida, “Measurement of moving objects with phase-shifting digital holography using liquid crystal retarder,” Opt. Commun. 420, 141–146 (2018).
[Crossref]

Opt. Contin. (1)

S. Yoshida and K. Nakayama, “Two-step method for fast phase-shifting digital holography using ferroelectric liquid crystal retarder,” Opt. Contin. 2, 1908–1916 (2019).
[Crossref]

Opt. Eng. (1)

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Opt. Express (8)

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
[Crossref]

T. Kozacki, R. Krajewski, and M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17, 13758–13767 (2009).
[Crossref]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]

J.-M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471–5480 (2008).
[Crossref]

S. Jeon, J. Lee, J. Cho, S. Jang, Y. Kim, and N. Park, “Wavelength-multiplexed digital holography for quantitative phase measurement using quantum dot film,” Opt. Express 26, 27305–27313 (2018).
[Crossref]

M. Leclercq and P. Picart, “Method for chromatic error compensation in digital color holographic imaging,” Opt. Express 21, 26456–26467 (2013).
[Crossref]

Y. Endo, T. Shimobaba, T. Kakue, and T. Ito, “GPU-accelerated compressive holography,” Opt. Express 24, 8437–8445 (2016).
[Crossref]

T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25, 11157–11172 (2017).
[Crossref]

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Opt. Lett. (8)

T. Kiire, D. Barada, J. Sugisaka, Y. Hayasaki, and T. Yatagai, “Color digital holography using a single monochromatic imaging sensor,” Opt. Lett. 37, 3153–3155 (2012).
[Crossref]

E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38, 1319–1321 (2013).
[Crossref]

J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
[Crossref]

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
[Crossref]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[Crossref]

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
[Crossref]

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

A. Brodoline, N. Rawat, D. Alexandre, N. Cubedo, and M. Grosse, “4D compressive sensing holographic microscopy imaging of small moving objects,” Opt. Lett. 44, 2827–2830 (2019).
[Crossref]

Other (5)

M. K. Kim, ed., Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

P. Picart and J.-C. Li, eds., Digital Holography (Wiley, 2013).

T.-C. Poon and J.-P. Liu, eds., Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and color three-dimensional imaging using a monochromatic image sensor,” in Digital Holography and Three-Dimensional Imaging (Optical Society of Japan, 2013), paper 13aE9.

T. Tahara, S. Kikunaga, Y. Arai, and Y. Takaki, “Phase-shifting interferometry capable of selectively extracting multiple wavelength information and its applications to sequential and parallel phase-shifting digital holography,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (online) (Optical Society of America, 2014), paper DM3B.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of WSPS-DH adopting a spatial light phase modulator.
Fig. 2.
Fig. 2. Optical setup constructed for the experiment.
Fig. 3.
Fig. 3. Experimental results. (a) One of the recorded wavelength-multiplexed phase-shifted holograms and (b) color-synthesized intensity and phase images at the wavelengths of (c) 638 nm, (d) 532 nm, and (e) 446 nm, which are obtained from a wavelength-multiplexed in-line hologram. (f) Color-synthesized intensity and phase images at the wavelengths of (g) 638 nm, (h) 532 nm, and (i) 446 nm, which are reconstructed by the proposed technique. Brightness of (b) and (f) are enhanced.
Fig. 4.
Fig. 4. Constructed inverted-type two-wavelength digital holographic microscope.
Fig. 5.
Fig. 5. Experimental results. (a) Intensity and (b) phase images at 633 nm; (c) intensity and (d) phase images at 532 nm, which were obtained from a wavelength-multiplexed in-line hologram. (e) Intensity and (f) phase images at 633 nm; (g) intensity and (h) phase images at 532 nm, which were obtained by the proposed technique. (i) Phase-unwrapped image obtained from (f) and (h) by using two-wavelength phase unwrapping.
Fig. 6.
Fig. 6. Constructed lensless wavelength-multiplexed digital holography system.
Fig. 7.
Fig. 7. Experimental results: (a)–(e) are reconstructed by phase-shifting digital holography with time-division technique. Intensity images at (a) 633 nm and (b) 532 nm. Phase images at (c) 633 nm and (d) 532 nm. (e) Phase-unwrapped image obtained from (c) and (d). (f)–(i) are reconstructed from a single wavelength-multiplexed hologram. Intensity images at (f) 633 nm and (g) 532 nm. Phase images at (h) 633 nm and (i) 532 nm. (j)–(n) are reconstructed by the proposed system. Intensity images at (j) 633 nm and (k) 532 nm. Phase images at (l) 633 nm and (m) 532 nm. (n) Phase-unwrapped image obtained from (l) and (m). (o) One of wavelength-multiplexed phase-shifted holograms. Color-synthesized images reconstructed from (p) time-division technique, (q) a single wavelength-multiplexed hologram, and (r) the proposed system. Brightness of (p), (q), and (r) are enhanced.

Metrics