Abstract

Here we achieved the structured light patterns of a pseudorandom dot array by a single diffractive optical element. The dot array can be applied to achieve three-dimensional imaging. First, the pseudorandom dot array was generated by the proposed improved encoding methods, which are an improved formula-method-based encoding algorithm and an improved enumeration-method-based encoding algorithm. Second, diffractive optical elements were designed as dot projectors to generate pseudorandom dots by the Gerchberg–Saxton algorithm. Pseudorandom dot arrays with different sizes were generated to validate the proposed encoding methods. A pseudorandom dot array with a maximal size of ${713}\times{449}$ was experimentally achieved. By analyzing the intensity distribution of the projecting pattern, the projected dots have a unique window of ${7}\times{7}$, and the dot array is distortion free. The proposed encoding methods, optimization algorithm, and applied fabrication technology have potential applications in three-dimensional imaging, three-dimensional sensing, shape measurement, and deformation measurement with high decoding speed.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-diffraction-efficiency pseudorandom encoding

Yongyi Yang, Henry Stark, Damla Gurkan, Christy L. Lawson, and Robert W. Cohn
J. Opt. Soc. Am. A 17(2) 285-293 (2000)

Multifunctional binary diffractive optical elements for structured light projectors

Omri Barlev and Michael A. Golub
Opt. Express 26(16) 21092-21107 (2018)

Two-dimensional gold matrix method for encoding two-dimensional optical arbitrary positions

Hao Li, Changhe Zhou, Shaoqing Wang, Yancong Lu, and Xiansong Xiang
Opt. Express 26(10) 12742-12754 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Kwon, S. Im, M. Chang, J.-E. Kim, and J.-S. Shim, “A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner,” J. Prosthodontic Res. 63, 115–119 (2019).
    [Crossref]
  2. G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
    [Crossref]
  3. Y. He and S. Chen, “Advances in sensing and processing methods for three-dimensional robot vision,” Int. J. Adv. Robot. Syst. 15, 1–19 (2018).
    [Crossref]
  4. E. Gedat, P. Fechner, R. Fiebelkorn, and R. Vandenhouten, “Multiple human skeleton recognition in RGB and depth images with graph theory, anatomic refinement of point clouds and machine learning,” in IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary (2017), pp. 000627.
  5. A. Jahraus, D. Lichti, and P. Dawson, “Self-calibration of a structured light based scanner for use in archeological applications,” Proc. SPIE 9528, 95280E (2015).
    [Crossref]
  6. X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
    [Crossref]
  7. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognition 43, 2666–2680 (2010).
    [Crossref]
  8. A. Goncharsky, A. Goncharsky, and S. Durlevich, “Diffractive optical element for creating visual 3D images,” Opt. Express 24, 9140–9148 (2016).
    [Crossref]
  9. L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55, 6046–6051 (2016).
    [Crossref]
  10. S.-F. Lin, H.-K. Cao, and E.-S. Kim, “Single SLM full-color holographic three-dimensional video display based on image and frequency-shift multiplexing,” Opt. Express 27, 15926–15942 (2019).
    [Crossref]
  11. P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Inf. 12, 886–901 (2016).
    [Crossref]
  12. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
    [Crossref]
  13. W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
    [Crossref]
  14. Q. Zhou, Y. Yang, and Z. Wang, “Combing structured light measurement technology with binocular stereo vision,” in 7th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (2017), pp. 42–46.
  15. C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
    [Crossref]
  16. Y. Xue and P. T. C. So, “Three-dimensional super-resolution high-throughput imaging by structured illumination STED microscopy,” Opt. Express 26, 20920–20928 (2018).
    [Crossref]
  17. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [Crossref]
  18. S. Thuries, A. Gillet, and B. Puybras, “Optical pattern projector,” US patent application14/747,197 (29December2016).
  19. R. Vandenhouten, A. Hermerschmidt, and R. Fiebelkorn, “Design and quality metrics of point patterns for coded structured light illumination with diffractive optical elements in optical 3D sensors,” Proc. SPIE 10335, 1033518 (2017).
    [Crossref]
  20. W. Qu, H. Gu, Q. Tan, and G. Jin, “Precise design of two-dimensional diffractive optical elements for beam shaping,” Appl. Opt. 54, 6521–6525 (2015).
    [Crossref]
  21. V. Gandhi, J. Orava, H. Tuovinen, T. Saastamoinen, J. Laukkanen, S. Honkanen, and M. Hauta-Kasari, “Diffractive optical elements for optical identification,” Appl. Opt. 54, 1606–1611 (2015).
    [Crossref]
  22. H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
    [Crossref]
  23. H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid Gerchberg Saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89, 109–115 (2017).
    [Crossref]
  24. P.-Q. Du, H.-F. Shih, J.-S. Chen, and Y.-S. Wang, “Design and verification of diffractive optical elements for speckle generation of 3-D range sensors,” Opt. Rev. 23, 1017–1025 (2016).
    [Crossref]
  25. J. García, Z. Zalevsky, P. García-Martínez, C. Ferreira, M. Teicher, and Y. Beiderman, “Three-dimensional mapping and range measurement by means of projected speckle patterns,” Appl. Opt. 47, 3032–3040 (2008).
    [Crossref]
  26. M. Schaffer, M. Grosse, and R. Kowarschik, “High-speed pattern projection for three-dimensional shape measurement using laser speckles,” Appl. Opt. 49, 3622–3629 (2010).
    [Crossref]
  27. U. Wijenayake, S.-I. Choi, and S.-Y. Park, “Combination of color and binary pattern codification for an error correcting M-array technique,” in Ninth Conference on Computer and Robot Vision (2012), pp. 139–146.
  28. U. Wijenayake and S.-Y. Park, “Dual pseudorandom array technique for error correction and hole filling of color structured-light three-dimensional scanning,” Opt. Eng. 54, 043109 (2015).
    [Crossref]
  29. F. J. MacWilliams and N. J. Sloane, “Pseudorandom sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
    [Crossref]
  30. R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
    [Crossref]
  31. T. Etzion, “Sequence folding, lattice tiling, and multidimensional coding,” IEEE Trans. Inf. Theory 57, 4383–4400 (2011).
    [Crossref]
  32. J. C. Cock, “Toroidal tilings from de Bruijn-Good cyclic sequences,” Discrete Math. 70, 209–210 (1988).
    [Crossref]
  33. J. N. Mait, “Design of Dammann gratings for two-dimensional, nonseparable, noncentrosymmetric responses,” Opt. Lett. 14, 196–198 (1989).
    [Crossref]

2019 (3)

J. H. Kwon, S. Im, M. Chang, J.-E. Kim, and J.-S. Shim, “A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner,” J. Prosthodontic Res. 63, 115–119 (2019).
[Crossref]

S.-F. Lin, H.-K. Cao, and E.-S. Kim, “Single SLM full-color holographic three-dimensional video display based on image and frequency-shift multiplexing,” Opt. Express 27, 15926–15942 (2019).
[Crossref]

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

2018 (3)

Y. Xue and P. T. C. So, “Three-dimensional super-resolution high-throughput imaging by structured illumination STED microscopy,” Opt. Express 26, 20920–20928 (2018).
[Crossref]

Y. He and S. Chen, “Advances in sensing and processing methods for three-dimensional robot vision,” Int. J. Adv. Robot. Syst. 15, 1–19 (2018).
[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
[Crossref]

2017 (2)

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid Gerchberg Saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89, 109–115 (2017).
[Crossref]

R. Vandenhouten, A. Hermerschmidt, and R. Fiebelkorn, “Design and quality metrics of point patterns for coded structured light illumination with diffractive optical elements in optical 3D sensors,” Proc. SPIE 10335, 1033518 (2017).
[Crossref]

2016 (4)

P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Inf. 12, 886–901 (2016).
[Crossref]

A. Goncharsky, A. Goncharsky, and S. Durlevich, “Diffractive optical element for creating visual 3D images,” Opt. Express 24, 9140–9148 (2016).
[Crossref]

L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55, 6046–6051 (2016).
[Crossref]

P.-Q. Du, H.-F. Shih, J.-S. Chen, and Y.-S. Wang, “Design and verification of diffractive optical elements for speckle generation of 3-D range sensors,” Opt. Rev. 23, 1017–1025 (2016).
[Crossref]

2015 (4)

U. Wijenayake and S.-Y. Park, “Dual pseudorandom array technique for error correction and hole filling of color structured-light three-dimensional scanning,” Opt. Eng. 54, 043109 (2015).
[Crossref]

A. Jahraus, D. Lichti, and P. Dawson, “Self-calibration of a structured light based scanner for use in archeological applications,” Proc. SPIE 9528, 95280E (2015).
[Crossref]

W. Qu, H. Gu, Q. Tan, and G. Jin, “Precise design of two-dimensional diffractive optical elements for beam shaping,” Appl. Opt. 54, 6521–6525 (2015).
[Crossref]

V. Gandhi, J. Orava, H. Tuovinen, T. Saastamoinen, J. Laukkanen, S. Honkanen, and M. Hauta-Kasari, “Diffractive optical elements for optical identification,” Appl. Opt. 54, 1606–1611 (2015).
[Crossref]

2014 (2)

H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
[Crossref]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref]

2011 (1)

T. Etzion, “Sequence folding, lattice tiling, and multidimensional coding,” IEEE Trans. Inf. Theory 57, 4383–4400 (2011).
[Crossref]

2010 (3)

M. Schaffer, M. Grosse, and R. Kowarschik, “High-speed pattern projection for three-dimensional shape measurement using laser speckles,” Appl. Opt. 49, 3622–3629 (2010).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognition 43, 2666–2680 (2010).
[Crossref]

2009 (1)

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

2008 (1)

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

1998 (1)

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
[Crossref]

1989 (1)

1988 (1)

J. C. Cock, “Toroidal tilings from de Bruijn-Good cyclic sequences,” Discrete Math. 70, 209–210 (1988).
[Crossref]

1976 (1)

F. J. MacWilliams and N. J. Sloane, “Pseudorandom sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[Crossref]

Beiderman, Y.

Brady, D. J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
[Crossref]

Cang, J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
[Crossref]

Cao, H.-K.

Cao, L.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
[Crossref]

L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55, 6046–6051 (2016).
[Crossref]

Chang, M.

J. H. Kwon, S. Im, M. Chang, J.-E. Kim, and J.-S. Shim, “A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner,” J. Prosthodontic Res. 63, 115–119 (2019).
[Crossref]

Chang, S.-W.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Chen, B.-C.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Chen, C.-Y.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Chen, J.-S.

P.-Q. Du, H.-F. Shih, J.-S. Chen, and Y.-S. Wang, “Design and verification of diffractive optical elements for speckle generation of 3-D range sensors,” Opt. Rev. 23, 1017–1025 (2016).
[Crossref]

Chen, P.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Chen, S.

Y. He and S. Chen, “Advances in sensing and processing methods for three-dimensional robot vision,” Int. J. Adv. Robot. Syst. 15, 1–19 (2018).
[Crossref]

Choi, S.-I.

U. Wijenayake, S.-I. Choi, and S.-Y. Park, “Combination of color and binary pattern codification for an error correcting M-array technique,” in Ninth Conference on Computer and Robot Vision (2012), pp. 139–146.

Cock, J. C.

J. C. Cock, “Toroidal tilings from de Bruijn-Good cyclic sequences,” Discrete Math. 70, 209–210 (1988).
[Crossref]

Conn, R.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
[Crossref]

Dawson, P.

A. Jahraus, D. Lichti, and P. Dawson, “Self-calibration of a structured light based scanner for use in archeological applications,” Proc. SPIE 9528, 95280E (2015).
[Crossref]

Deng, Q.

H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
[Crossref]

Docchio, F.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

Du, C.

H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
[Crossref]

Du, P.-Q.

P.-Q. Du, H.-F. Shih, J.-S. Chen, and Y.-S. Wang, “Design and verification of diffractive optical elements for speckle generation of 3-D range sensors,” Opt. Rev. 23, 1017–1025 (2016).
[Crossref]

Dubin, S.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
[Crossref]

Durlevich, S.

Etzion, T.

T. Etzion, “Sequence folding, lattice tiling, and multidimensional coding,” IEEE Trans. Inf. Theory 57, 4383–4400 (2011).
[Crossref]

Fechner, P.

E. Gedat, P. Fechner, R. Fiebelkorn, and R. Vandenhouten, “Multiple human skeleton recognition in RGB and depth images with graph theory, anatomic refinement of point clouds and machine learning,” in IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary (2017), pp. 000627.

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognition 43, 2666–2680 (2010).
[Crossref]

Ferreira, C.

Fiebelkorn, R.

R. Vandenhouten, A. Hermerschmidt, and R. Fiebelkorn, “Design and quality metrics of point patterns for coded structured light illumination with diffractive optical elements in optical 3D sensors,” Proc. SPIE 10335, 1033518 (2017).
[Crossref]

E. Gedat, P. Fechner, R. Fiebelkorn, and R. Vandenhouten, “Multiple human skeleton recognition in RGB and depth images with graph theory, anatomic refinement of point clouds and machine learning,” in IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary (2017), pp. 000627.

Gandhi, V.

García, J.

García-Martínez, P.

Gedat, E.

E. Gedat, P. Fechner, R. Fiebelkorn, and R. Vandenhouten, “Multiple human skeleton recognition in RGB and depth images with graph theory, anatomic refinement of point clouds and machine learning,” in IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary (2017), pp. 000627.

Gillet, A.

S. Thuries, A. Gillet, and B. Puybras, “Optical pattern projector,” US patent application14/747,197 (29December2016).

Goncharsky, A.

Grosse, M.

Gu, C.

Gu, H.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Hauta-Kasari, M.

He, Y.

Y. He and S. Chen, “Advances in sensing and processing methods for three-dimensional robot vision,” Int. J. Adv. Robot. Syst. 15, 1–19 (2018).
[Crossref]

Hermerschmidt, A.

R. Vandenhouten, A. Hermerschmidt, and R. Fiebelkorn, “Design and quality metrics of point patterns for coded structured light illumination with diffractive optical elements in optical 3D sensors,” Proc. SPIE 10335, 1033518 (2017).
[Crossref]

Honkanen, S.

Hwu, Y.-K.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Ichihashi, Y.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref]

Im, S.

J. H. Kwon, S. Im, M. Chang, J.-E. Kim, and J.-S. Shim, “A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner,” J. Prosthodontic Res. 63, 115–119 (2019).
[Crossref]

Jahraus, A.

A. Jahraus, D. Lichti, and P. Dawson, “Self-calibration of a structured light based scanner for use in archeological applications,” Proc. SPIE 9528, 95280E (2015).
[Crossref]

Jin, G.

Kim, E.-S.

Kim, J.-E.

J. H. Kwon, S. Im, M. Chang, J.-E. Kim, and J.-S. Shim, “A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner,” J. Prosthodontic Res. 63, 115–119 (2019).
[Crossref]

Kowarschik, R.

Kuo, C.-W.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Kwon, J. H.

J. H. Kwon, S. Im, M. Chang, J.-E. Kim, and J.-S. Shim, “A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner,” J. Prosthodontic Res. 63, 115–119 (2019).
[Crossref]

Laukkanen, J.

Lichti, D.

A. Jahraus, D. Lichti, and P. Dawson, “Self-calibration of a structured light based scanner for use in archeological applications,” Proc. SPIE 9528, 95280E (2015).
[Crossref]

Lin, S.-F.

Liu, J.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid Gerchberg Saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89, 109–115 (2017).
[Crossref]

Liu, Y.-T.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognition 43, 2666–2680 (2010).
[Crossref]

Lu, C.-H.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

MacWilliams, F. J.

F. J. MacWilliams and N. J. Sloane, “Pseudorandom sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[Crossref]

Mait, J. N.

Morano, R. A.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
[Crossref]

Nissanov, J.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
[Crossref]

Oi, R.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref]

Okada, Y.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Orava, J.

Ozturk, C.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
[Crossref]

Pang, H.

H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
[Crossref]

Park, S.-Y.

U. Wijenayake and S.-Y. Park, “Dual pseudorandom array technique for error correction and hole filling of color structured-light three-dimensional scanning,” Opt. Eng. 54, 043109 (2015).
[Crossref]

U. Wijenayake, S.-I. Choi, and S.-Y. Park, “Combination of color and binary pattern codification for an error correcting M-array technique,” in Ninth Conference on Computer and Robot Vision (2012), pp. 139–146.

Poon, T.-C.

P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Inf. 12, 886–901 (2016).
[Crossref]

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognition 43, 2666–2680 (2010).
[Crossref]

Puybras, B.

S. Thuries, A. Gillet, and B. Puybras, “Optical pattern projector,” US patent application14/747,197 (29December2016).

Qu, W.

Saastamoinen, T.

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognition 43, 2666–2680 (2010).
[Crossref]

Sansoni, G.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

Sasaki, H.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref]

Schaffer, M.

Senoh, T.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref]

Shi, L.

H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
[Crossref]

Shih, H.-F.

P.-Q. Du, H.-F. Shih, J.-S. Chen, and Y.-S. Wang, “Design and verification of diffractive optical elements for speckle generation of 3-D range sensors,” Opt. Rev. 23, 1017–1025 (2016).
[Crossref]

Shim, J.-S.

J. H. Kwon, S. Im, M. Chang, J.-E. Kim, and J.-S. Shim, “A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner,” J. Prosthodontic Res. 63, 115–119 (2019).
[Crossref]

Situ, G.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid Gerchberg Saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89, 109–115 (2017).
[Crossref]

Sloane, N. J.

F. J. MacWilliams and N. J. Sloane, “Pseudorandom sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[Crossref]

So, P. T. C.

Song, Q.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid Gerchberg Saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89, 109–115 (2017).
[Crossref]

Su, X.

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

Tan, Q.

Tang, W.-C.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Teicher, M.

Thuries, S.

S. Thuries, A. Gillet, and B. Puybras, “Optical pattern projector,” US patent application14/747,197 (29December2016).

Trebeschi, M.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

Tsai, Y.-C.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Tsang, P. W. M.

P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Inf. 12, 886–901 (2016).
[Crossref]

Tuovinen, H.

Vandenhouten, R.

R. Vandenhouten, A. Hermerschmidt, and R. Fiebelkorn, “Design and quality metrics of point patterns for coded structured light illumination with diffractive optical elements in optical 3D sensors,” Proc. SPIE 10335, 1033518 (2017).
[Crossref]

E. Gedat, P. Fechner, R. Fiebelkorn, and R. Vandenhouten, “Multiple human skeleton recognition in RGB and depth images with graph theory, anatomic refinement of point clouds and machine learning,” in IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary (2017), pp. 000627.

Wakunami, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref]

Wang, H.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid Gerchberg Saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89, 109–115 (2017).
[Crossref]

Wang, Y.-S.

P.-Q. Du, H.-F. Shih, J.-S. Chen, and Y.-S. Wang, “Design and verification of diffractive optical elements for speckle generation of 3-D range sensors,” Opt. Rev. 23, 1017–1025 (2016).
[Crossref]

Wang, Z.

L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55, 6046–6051 (2016).
[Crossref]

Q. Zhou, Y. Yang, and Z. Wang, “Combing structured light measurement technology with binocular stereo vision,” in 7th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (2017), pp. 42–46.

Wijenayake, U.

U. Wijenayake and S.-Y. Park, “Dual pseudorandom array technique for error correction and hole filling of color structured-light three-dimensional scanning,” Opt. Eng. 54, 043109 (2015).
[Crossref]

U. Wijenayake, S.-I. Choi, and S.-Y. Park, “Combination of color and binary pattern codification for an error correcting M-array technique,” in Ninth Conference on Computer and Robot Vision (2012), pp. 139–146.

Wu, F. C. M.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Xue, Y.

Yamamoto, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref]

Yang, S.-M.

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Yang, Y.

Q. Zhou, Y. Yang, and Z. Wang, “Combing structured light measurement technology with binocular stereo vision,” in 7th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (2017), pp. 42–46.

Yin, S.

H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
[Crossref]

Yue, W.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid Gerchberg Saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89, 109–115 (2017).
[Crossref]

Zalevsky, Z.

Zhang, H.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
[Crossref]

L. Cao, Z. Wang, H. Zhang, G. Jin, and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,” Appl. Opt. 55, 6046–6051 (2016).
[Crossref]

Zhang, Q.

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

Zhang, W.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
[Crossref]

Zheng, G.

H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
[Crossref]

Zhou, Q.

Q. Zhou, Y. Yang, and Z. Wang, “Combing structured light measurement technology with binocular stereo vision,” in 7th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (2017), pp. 42–46.

Zietz, S.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
[Crossref]

Appl. Opt. (5)

Commun. Biol. (1)

C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, “Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging,” Commun. Biol. 2, 177 (2019).
[Crossref]

Discrete Math. (1)

J. C. Cock, “Toroidal tilings from de Bruijn-Good cyclic sequences,” Discrete Math. 70, 209–210 (1988).
[Crossref]

IEEE Trans. Ind. Inf. (1)

P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Inf. 12, 886–901 (2016).
[Crossref]

IEEE Trans. Inf. Theory (1)

T. Etzion, “Sequence folding, lattice tiling, and multidimensional coding,” IEEE Trans. Inf. Theory 57, 4383–4400 (2011).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327 (1998).
[Crossref]

Int. J. Adv. Robot. Syst. (1)

Y. He and S. Chen, “Advances in sensing and processing methods for three-dimensional robot vision,” Int. J. Adv. Robot. Syst. 15, 1–19 (2018).
[Crossref]

J. Prosthodontic Res. (1)

J. H. Kwon, S. Im, M. Chang, J.-E. Kim, and J.-S. Shim, “A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner,” J. Prosthodontic Res. 63, 115–119 (2019).
[Crossref]

Opt. Eng. (1)

U. Wijenayake and S.-Y. Park, “Dual pseudorandom array technique for error correction and hole filling of color structured-light three-dimensional scanning,” Opt. Eng. 54, 043109 (2015).
[Crossref]

Opt. Express (3)

Opt. Laser Eng. (2)

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid Gerchberg Saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89, 109–115 (2017).
[Crossref]

Opt. Lett. (1)

Opt. Rev. (1)

P.-Q. Du, H.-F. Shih, J.-S. Chen, and Y.-S. Wang, “Design and verification of diffractive optical elements for speckle generation of 3-D range sensors,” Opt. Rev. 23, 1017–1025 (2016).
[Crossref]

Pattern Recognition (1)

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognition 43, 2666–2680 (2010).
[Crossref]

Phys. Rev. Lett. (1)

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).
[Crossref]

Proc. IEEE (1)

F. J. MacWilliams and N. J. Sloane, “Pseudorandom sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Proc. SPIE (3)

R. Vandenhouten, A. Hermerschmidt, and R. Fiebelkorn, “Design and quality metrics of point patterns for coded structured light illumination with diffractive optical elements in optical 3D sensors,” Proc. SPIE 10335, 1033518 (2017).
[Crossref]

H. Pang, S. Yin, G. Zheng, Q. Deng, L. Shi, and C. Du, “Design the diffractive optical element with large diffraction angle,” Proc. SPIE 9271, 92711M (2014).
[Crossref]

A. Jahraus, D. Lichti, and P. Dawson, “Self-calibration of a structured light based scanner for use in archeological applications,” Proc. SPIE 9528, 95280E (2015).
[Crossref]

Sci. Rep. (1)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref]

Sensors (1)

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

Other (4)

E. Gedat, P. Fechner, R. Fiebelkorn, and R. Vandenhouten, “Multiple human skeleton recognition in RGB and depth images with graph theory, anatomic refinement of point clouds and machine learning,” in IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary (2017), pp. 000627.

U. Wijenayake, S.-I. Choi, and S.-Y. Park, “Combination of color and binary pattern codification for an error correcting M-array technique,” in Ninth Conference on Computer and Robot Vision (2012), pp. 139–146.

S. Thuries, A. Gillet, and B. Puybras, “Optical pattern projector,” US patent application14/747,197 (29December2016).

Q. Zhou, Y. Yang, and Z. Wang, “Combing structured light measurement technology with binocular stereo vision,” in 7th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (2017), pp. 42–46.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Flow chart of the proposed encoding methods. (a) Improved formula-method-based encoding algorithm [based on M-sequence folding algorithm (IMFA)]. (b) Improved enumeration-method-based encoding algorithm (IEA).
Fig. 2.
Fig. 2. (a) Fabricated DOE used as pseudorandom array projector. (b) SEM image of the surface profile of the fabricated DOE.
Fig. 3.
Fig. 3. (a) Schematic of the experimental setup for optical projection by DOE. (b) Experimental setup of generating the pseudorandom array or lattice by the fabricated DOE and capturing by CCD. (c) Another view of the experimental setup. O, objective with $f={40}\,\,{\rm mm}$ and ${\rm NA}={0.13}$ for beam expansion. The diameter of the collimated beam is 10.5 mm; LD, laser diode with wavelength of 0.85 µm. The CCD is applied to obtain the projected pseudorandom array. P, projection screen, which is marked by red dashed line in (b). Here, the dots of generated pseudorandom dot array are projected onto P.
Fig. 4.
Fig. 4. Partial enlarged intensity distribution of the obtained projecting field generated by DOE listed in Table 2. (a)  ${99}\times{99}$ , (b)  ${149}\times{149}$ , (c)  ${199}\times{199}$ , and (d)  ${249}\times{249}$ . (a1), (b1), (c1), and (d1) are pseudorandom dots near the center. (a2), (b2), (c2), and (d2) are pseudorandom dots near the margin.
Fig. 5.
Fig. 5. (a) Designed pseudorandom dot array with size ${713}\times{449}$ . The white zone represents the designed projecting dots. (b) Phase distribution of the DOE, which is applied to generated dot array of Fig. 1(a). (c) Enlarged pseudorandom dot array of red box marked zone in (a). As an example, a unique window of ${7}\times{7}$ is marked by the red dashed box. (d) Enlarged phase distribution of the red box marked zone in (b). Notice that, because the pixel number is too large, position of the enlarged figure is not accurate to the red box.
Fig. 6.
Fig. 6. (a) Generated pseudorandom dot array, which is captured by CCD in Fig.  3 by the fabricated DOE. The size of dot array is ${713}\times{449}$ . (b) Enlarged image of the near center zone of (a). One can see the large bright dots from (a) and (b). (c) Enlarged image of the zone marked by the white box in (b). Obviously, the projected dot is round and bright as shown in (c). (d) Gray level along dashed line in (c). Gray level is near 255 for the projecting dots.

Tables (2)

Tables Icon

Table 1. Characteristics of the Designed Pseudorandom Matrix based on the Proposed Improved Coding Scheme and Improved Coding Algorithm of the Enumeration Method

Tables Icon

Table 2. DOE with Different Sizes for Generating Designed Pseudorandom Dot Arrays

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n = 2 m 1 = n 1 × n 2 ,
m = k 1 × k 2 ,
n 1 = 2 k 1 1 ,
n 2 = n / n 1 ,
Δ x 1 = L x 1 M = 2 tan ( θ x / 2 ) z M ,
Δ y 1 = L y 1 N = 2 tan ( θ y / 2 ) z N ,
Δ x = λ z M Δ x 1 = λ 2 tan ( θ x / 2 ) ,
Δ y = λ z N Δ y 1 = λ 2 tan ( θ y / 2 ) ,

Metrics