Abstract

Digital holography is widely used in many fields for imaging, display, and metrology by exploiting its capability to furnish quantitative phase contrast maps. The entire processing pipeline that permits achievement of phase contrast images can be obtained by a cascade of numerical processing, such as zero-order and twin-image suppression, automatic refocusing, phase extraction by aberration compensation, and, if necessary, phase unwrapping. In this paper, we propose a new method, to the best of our knowledge, based on singular value decomposition filtering, to suppress zero-order and twin images in off-axis configuration, thus, automatically selecting the desired real diffraction order. We demonstrate the proposed approach in the case of lack of knowledge about the reference beam’s frequency and curvature, which typically occurs in portable off-axis holographic microscope systems for lab-on-a-chip applications. We validate the proposed strategy by a comparison with common Fourier spatial filtering in the case of different experimental conditions and for several biological samples.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial filtering for zero-order and twin-image elimination in digital off-axis holography

Etienne Cuche, Pierre Marquet, and Christian Depeursinge
Appl. Opt. 39(23) 4070-4075 (2000)

Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy

Wen Xiao, Qixiang Wang, Feng Pan, Runyu Cao, Xintong Wu, and Lianwen Sun
Biomed. Opt. Express 10(4) 1613-1626 (2019)

Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube

J. A. Picazo-Bueno, M. Trusiak, and V. Micó
Opt. Express 27(4) 5655-5669 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy, Springer Series in Surface Sciences (Springer, 2011), Vol. 46.
    [Crossref]
  2. Y. K. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
    [Crossref]
  3. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 18005 (2010).
    [Crossref]
  4. P. Memmolo, V. Bianco, M. Paturzo, and P. Ferraro, “Numerical manipulation of digital holograms for 3-D imaging and display: an overview,” Proc. IEEE 105, 892–905 (2017).
    [Crossref]
  5. F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
    [Crossref]
  6. Z. S. Ballard, Y. Zhang, and A. Ozcan, “Off-axis holography and micro-optics improve lab-on-a-chip imaging,” Light Sci. Appl. 6, e17105 (2017).
    [Crossref]
  7. V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
    [Crossref]
  8. P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
    [Crossref]
  9. X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
    [Crossref]
  10. F. Merola, P. Memmolo, L. Miccio, M. Mugnano, and P. Ferraro, “Phase contrast tomography at lab on chip scale by digital holography,” Methods 136, 108–115 (2018).
    [Crossref]
  11. D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Tomographic phase microscopy: principles and applications in bioimaging [invited],” J. Opt. Soc. Am. B 34, B64–B77 (2017).
    [Crossref]
  12. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
    [Crossref]
  13. M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
    [Crossref]
  14. B. Javidi, A. Markman, S. Rawat, T. O’Connor, A. Anand, and B. Andemariam, “Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy,” Opt. Express 26, 13614–13627 (2018).
    [Crossref]
  15. D. K. Singh, C. C. Ahrens, W. Li, and S. A. Vanapalli, “Label-free, high-throughput holographic screening and enumeration of tumor cells in blood,” Lab Chip 17, 2920–2932 (2017).
    [Crossref]
  16. M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
    [Crossref]
  17. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [Crossref]
  18. D. Kim, R. Magnusson, M. Jin, J. Lee, and W. Chegal, “Complex object wave direct extraction method in off-axis digital holography,” Opt. Express 21, 3658–3668 (2013).
    [Crossref]
  19. M. Matrecano, P. Memmolo, L. Miccio, A. Persano, F. Quaranta, P. Siciliano, and P. Ferraro, “Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization,” Appl. Opt. 54, 3428–3432 (2015).
    [Crossref]
  20. Z. Dong, H. Wang, and X. Wang, “Automatic filtering for zero-order and twin-image elimination in off-axis digital holography,” Opt. Eng. 58, 023112 (2019).
    [Crossref]
  21. S. K. Mohammed, L. Bouamama, D. Bahloul, and P. Picart, “Quality assessment of refocus criteria for particle imaging in digital off-axis holography,” Appl. Opt. 56, F158–F166 (2017).
    [Crossref]
  22. Y. Zhang, H. Wang, Y. Wu, M. Tamamitsu, and A. Ozcan, “Edge sparsity criterion for robust holographic autofocusing,” Opt. Lett. 42, 3824–3827 (2017).
    [Crossref]
  23. P. Memmolo, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Refocusing criterion via sparsity measurements in digital holography,” Opt. Lett. 39, 4719–4722 (2014).
    [Crossref]
  24. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
    [Crossref]
  25. J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Optimal principal component analysis-based numerical phase aberration compensation method for digital holography,” Opt. Lett. 41, 1293–1296 (2016).
    [Crossref]
  26. J. M. Bioucas-Dias and G. Valadão, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
    [Crossref]
  27. J. Bioucas-Dias, V. Katkovnik, J. Astola, and K. Egiazarian, “Absolute phase estimation: adaptive local denoising and global unwrapping,” Appl. Opt. 47, 5358–5369 (2008).
    [Crossref]
  28. W. Xiao, Q. Wang, F. Pan, R. Cao, X. Wu, and L. Sun, “Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy,” Biomed. Opt. Express 10, 1613–1626 (2019).
    [Crossref]
  29. T. Pitkäaho, A. Manninen, and T. J. Naughton, “Focus prediction in digital holographic microscopy using deep convolutional neural networks,” Appl. Opt. 58, A202–A208 (2019).
    [Crossref]
  30. T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).
    [Crossref]
  31. K. Wang, Y. Li, Q. Kemao, J. Di, and J. Zhao, “One-step robust deep learning phase unwrapping,” Opt. Express 27, 15100–15115 (2019).
    [Crossref]
  32. R. A. Sadek, “SVD based image processing applications: state of the art, contributions and research challenges,” arXiv:1211.7102 (2012).
  33. J. J. Gerbrands, “On the relationships between SVD, KLT and PCA,” Pattern Recogn. 14, 375–381 (1981).
    [Crossref]

2019 (4)

2018 (5)

Y. K. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, M. Mugnano, and P. Ferraro, “Phase contrast tomography at lab on chip scale by digital holography,” Methods 136, 108–115 (2018).
[Crossref]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

B. Javidi, A. Markman, S. Rawat, T. O’Connor, A. Anand, and B. Andemariam, “Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy,” Opt. Express 26, 13614–13627 (2018).
[Crossref]

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

2017 (9)

D. K. Singh, C. C. Ahrens, W. Li, and S. A. Vanapalli, “Label-free, high-throughput holographic screening and enumeration of tumor cells in blood,” Lab Chip 17, 2920–2932 (2017).
[Crossref]

D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Tomographic phase microscopy: principles and applications in bioimaging [invited],” J. Opt. Soc. Am. B 34, B64–B77 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

P. Memmolo, V. Bianco, M. Paturzo, and P. Ferraro, “Numerical manipulation of digital holograms for 3-D imaging and display: an overview,” Proc. IEEE 105, 892–905 (2017).
[Crossref]

Z. S. Ballard, Y. Zhang, and A. Ozcan, “Off-axis holography and micro-optics improve lab-on-a-chip imaging,” Light Sci. Appl. 6, e17105 (2017).
[Crossref]

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).
[Crossref]

S. K. Mohammed, L. Bouamama, D. Bahloul, and P. Picart, “Quality assessment of refocus criteria for particle imaging in digital off-axis holography,” Appl. Opt. 56, F158–F166 (2017).
[Crossref]

Y. Zhang, H. Wang, Y. Wu, M. Tamamitsu, and A. Ozcan, “Edge sparsity criterion for robust holographic autofocusing,” Opt. Lett. 42, 3824–3827 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (2)

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[Crossref]

P. Memmolo, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Refocusing criterion via sparsity measurements in digital holography,” Opt. Lett. 39, 4719–4722 (2014).
[Crossref]

2013 (1)

2010 (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 18005 (2010).
[Crossref]

2008 (1)

2007 (1)

J. M. Bioucas-Dias and G. Valadão, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
[Crossref]

2006 (1)

2000 (1)

1981 (1)

J. J. Gerbrands, “On the relationships between SVD, KLT and PCA,” Pattern Recogn. 14, 375–381 (1981).
[Crossref]

Ahrens, C. C.

D. K. Singh, C. C. Ahrens, W. Li, and S. A. Vanapalli, “Label-free, high-throughput holographic screening and enumeration of tumor cells in blood,” Lab Chip 17, 2920–2932 (2017).
[Crossref]

Anand, A.

Andemariam, B.

Andolfo, I.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

Aspert, N.

Astola, J.

Bahloul, D.

Ballard, Z. S.

Z. S. Ballard, Y. Zhang, and A. Ozcan, “Off-axis holography and micro-optics improve lab-on-a-chip imaging,” Light Sci. Appl. 6, e17105 (2017).
[Crossref]

Bianco, V.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

P. Memmolo, V. Bianco, M. Paturzo, and P. Ferraro, “Numerical manipulation of digital holograms for 3-D imaging and display: an overview,” Proc. IEEE 105, 892–905 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

Bioucas-Dias, J.

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and G. Valadão, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
[Crossref]

Bouamama, L.

Bramanti, A.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

Bui, V.

Cao, R.

Chang, L.-C.

Charrière, F.

Chegal, W.

Chen, Q.

Colomb, T.

Coppola, G.

Coppola, S.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Cuche, E.

D’Ippolito, G.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Depeursinge, C.

Di, J.

Di Caprio, G.

Dong, Z.

Z. Dong, H. Wang, and X. Wang, “Automatic filtering for zero-order and twin-image elimination in off-axis digital holography,” Opt. Eng. 58, 023112 (2019).
[Crossref]

Egiazarian, K.

Ferraro, P.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, M. Mugnano, and P. Ferraro, “Phase contrast tomography at lab on chip scale by digital holography,” Methods 136, 108–115 (2018).
[Crossref]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

P. Memmolo, V. Bianco, M. Paturzo, and P. Ferraro, “Numerical manipulation of digital holograms for 3-D imaging and display: an overview,” Proc. IEEE 105, 892–905 (2017).
[Crossref]

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

M. Matrecano, P. Memmolo, L. Miccio, A. Persano, F. Quaranta, P. Siciliano, and P. Ferraro, “Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization,” Appl. Opt. 54, 3428–3432 (2015).
[Crossref]

P. Memmolo, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Refocusing criterion via sparsity measurements in digital holography,” Opt. Lett. 39, 4719–4722 (2014).
[Crossref]

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy, Springer Series in Surface Sciences (Springer, 2011), Vol. 46.
[Crossref]

Fontana, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Gambale, A.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Gerbrands, J. J.

J. J. Gerbrands, “On the relationships between SVD, KLT and PCA,” Pattern Recogn. 14, 375–381 (1981).
[Crossref]

Hong, J.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[Crossref]

Iolascon, A.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Javidi, B.

Jin, D.

Jin, M.

Katkovnik, V.

Kemao, Q.

Kim, D.

Kim, M. K.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 18005 (2010).
[Crossref]

Kühn, J.

Lam, V.

Lee, J.

Li, W.

D. K. Singh, C. C. Ahrens, W. Li, and S. A. Vanapalli, “Label-free, high-throughput holographic screening and enumeration of tumor cells in blood,” Lab Chip 17, 2920–2932 (2017).
[Crossref]

Li, Y.

Liu, C.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[Crossref]

Maffettone, P. L.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

Magnusson, R.

Mandracchia, B.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Manninen, A.

Marchesano, V.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Markman, A.

Marquet, P.

Matrecano, M.

Memmolo, P.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, M. Mugnano, and P. Ferraro, “Phase contrast tomography at lab on chip scale by digital holography,” Methods 136, 108–115 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

P. Memmolo, V. Bianco, M. Paturzo, and P. Ferraro, “Numerical manipulation of digital holograms for 3-D imaging and display: an overview,” Proc. IEEE 105, 892–905 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

M. Matrecano, P. Memmolo, L. Miccio, A. Persano, F. Quaranta, P. Siciliano, and P. Ferraro, “Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization,” Appl. Opt. 54, 3428–3432 (2015).
[Crossref]

P. Memmolo, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Refocusing criterion via sparsity measurements in digital holography,” Opt. Lett. 39, 4719–4722 (2014).
[Crossref]

Merola, F.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, M. Mugnano, and P. Ferraro, “Phase contrast tomography at lab on chip scale by digital holography,” Methods 136, 108–115 (2018).
[Crossref]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

Miccio, L.

F. Merola, P. Memmolo, L. Miccio, M. Mugnano, and P. Ferraro, “Phase contrast tomography at lab on chip scale by digital holography,” Methods 136, 108–115 (2018).
[Crossref]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

M. Matrecano, P. Memmolo, L. Miccio, A. Persano, F. Quaranta, P. Siciliano, and P. Ferraro, “Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization,” Appl. Opt. 54, 3428–3432 (2015).
[Crossref]

Mohammed, S. K.

Mugnano, M.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, M. Mugnano, and P. Ferraro, “Phase contrast tomography at lab on chip scale by digital holography,” Methods 136, 108–115 (2018).
[Crossref]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Naughton, T. J.

Nehmetallah, G.

Netti, P. A.

Nguyen, T.

O’Connor, T.

Olivieri, F.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Ozcan, A.

Z. S. Ballard, Y. Zhang, and A. Ozcan, “Off-axis holography and micro-optics improve lab-on-a-chip imaging,” Light Sci. Appl. 6, e17105 (2017).
[Crossref]

Y. Zhang, H. Wang, Y. Wu, M. Tamamitsu, and A. Ozcan, “Edge sparsity criterion for robust holographic autofocusing,” Opt. Lett. 42, 3824–3827 (2017).
[Crossref]

Pagliarulo, V.

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Pan, F.

Park, Y. K.

Y. K. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

Paturzo, M.

P. Memmolo, V. Bianco, M. Paturzo, and P. Ferraro, “Numerical manipulation of digital holograms for 3-D imaging and display: an overview,” Proc. IEEE 105, 892–905 (2017).
[Crossref]

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

P. Memmolo, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Refocusing criterion via sparsity measurements in digital holography,” Opt. Lett. 39, 4719–4722 (2014).
[Crossref]

Persano, A.

Picart, P.

Pitkäaho, T.

Popescu, G.

Y. K. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

Quaranta, F.

Raub, C. B.

Rawat, S.

Russo, R.

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

Sadek, R. A.

R. A. Sadek, “SVD based image processing applications: state of the art, contributions and research challenges,” arXiv:1211.7102 (2012).

Sardo, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Savoia, R.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Siciliano, P.

Singh, D. K.

D. K. Singh, C. C. Ahrens, W. Li, and S. A. Vanapalli, “Label-free, high-throughput holographic screening and enumeration of tumor cells in blood,” Lab Chip 17, 2920–2932 (2017).
[Crossref]

So, P. T. C.

Sun, J.

Sun, L.

Tamamitsu, M.

Valadão, G.

J. M. Bioucas-Dias and G. Valadão, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
[Crossref]

Vanapalli, S. A.

D. K. Singh, C. C. Ahrens, W. Li, and S. A. Vanapalli, “Label-free, high-throughput holographic screening and enumeration of tumor cells in blood,” Lab Chip 17, 2920–2932 (2017).
[Crossref]

Villone, M. M.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

Wang, H.

Z. Dong, H. Wang, and X. Wang, “Automatic filtering for zero-order and twin-image elimination in off-axis digital holography,” Opt. Eng. 58, 023112 (2019).
[Crossref]

Y. Zhang, H. Wang, Y. Wu, M. Tamamitsu, and A. Ozcan, “Edge sparsity criterion for robust holographic autofocusing,” Opt. Lett. 42, 3824–3827 (2017).
[Crossref]

Wang, K.

Wang, Q.

Wang, X.

Z. Dong, H. Wang, and X. Wang, “Automatic filtering for zero-order and twin-image elimination in off-axis digital holography,” Opt. Eng. 58, 023112 (2019).
[Crossref]

Wax, A.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy, Springer Series in Surface Sciences (Springer, 2011), Vol. 46.
[Crossref]

Wu, X.

Wu, Y.

Xiao, W.

Yaqoob, Z.

Yu, X.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[Crossref]

Zalevsky, Z.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy, Springer Series in Surface Sciences (Springer, 2011), Vol. 46.
[Crossref]

Zhang, Y.

Zhao, J.

Zhou, R.

Zuo, C.

Adv. Opt. Photon. (1)

Anal. Chem. (1)

M. Mugnano, P. Memmolo, L. Miccio, F. Merola, V. Bianco, A. Bramanti, A. Gambale, R. Russo, I. Andolfo, A. Iolascon, and P. Ferraro, “Label-free optical marker for red-blood-cell phenotyping of inherited anemias,” Anal. Chem. 90, 7495–7501 (2018).
[Crossref]

Appl. Opt. (5)

Biomed. Opt. Express (1)

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and G. Valadão, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698–709 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Lab Chip (2)

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

D. K. Singh, C. C. Ahrens, W. Li, and S. A. Vanapalli, “Label-free, high-throughput holographic screening and enumeration of tumor cells in blood,” Lab Chip 17, 2920–2932 (2017).
[Crossref]

Light Sci. Appl. (3)

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Z. S. Ballard, Y. Zhang, and A. Ozcan, “Off-axis holography and micro-optics improve lab-on-a-chip imaging,” Light Sci. Appl. 6, e17105 (2017).
[Crossref]

V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6, e17055 (2017).
[Crossref]

Methods (1)

F. Merola, P. Memmolo, L. Miccio, M. Mugnano, and P. Ferraro, “Phase contrast tomography at lab on chip scale by digital holography,” Methods 136, 108–115 (2018).
[Crossref]

Nat. Photonics (1)

Y. K. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

Opt. Eng. (2)

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[Crossref]

Z. Dong, H. Wang, and X. Wang, “Automatic filtering for zero-order and twin-image elimination in off-axis digital holography,” Opt. Eng. 58, 023112 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Pattern Recogn. (1)

J. J. Gerbrands, “On the relationships between SVD, KLT and PCA,” Pattern Recogn. 14, 375–381 (1981).
[Crossref]

Proc. IEEE (2)

P. Memmolo, V. Bianco, M. Paturzo, and P. Ferraro, “Numerical manipulation of digital holograms for 3-D imaging and display: an overview,” Proc. IEEE 105, 892–905 (2017).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 18005 (2010).
[Crossref]

Other (2)

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy, Springer Series in Surface Sciences (Springer, 2011), Vol. 46.
[Crossref]

R. A. Sadek, “SVD based image processing applications: state of the art, contributions and research challenges,” arXiv:1211.7102 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Amplitude Fourier spectrums show the three diffraction order appearances in the case of object and reference wavefront curvature matching (a) and not (b). The inset figures report the corresponding digital holograms, and the red arrows indicate the desired real diffraction orders.
Fig. 2.
Fig. 2. BFP recovery by TC maximization. (a) The TC trend shows the global maximum at distance $d = {163}\,\,\unicode{x00B5}{\rm m}$ , corresponding to the BFP reconstruction in (b). The coordinates ( ${X_{\rm BFP}}$ , ${Y_{\rm BFP}}$ ) highlight the calculated carrier frequency.
Fig. 3.
Fig. 3. SVD-based filtering strategy. (a) is the Fourier spectrum in Fig. 1(b) after the demodulation using the BFP-based carrier frequency calculation. (b) and (c) are the first and the second singular value reconstructions, obtained by Eq. (2), and (d) is the histogram of the pixel values of (c).
Fig. 4.
Fig. 4. SVD-based filter correction. (a) is the binary mask obtained after the thresholding procedure in Eq. (3). The residual errors highlighted in the zoomed inset are removed a second step from filtering along with an optionally dilated step, obtaining the SVD filter (b). In (c), the phase reconstruction of the digital hologram in Fig. 1(b), after application of the SVD filter in (b) is reported.
Fig. 5.
Fig. 5. Comparison between BFF and SVD filtering. (a), (e), (i), (m), and (q) are the Fourier transform of the corresponding digital hologram. The pairs (b), (c); (f), (g); (j), (k); (n), (o); and (r), (s) report the BFF and SVD filter applied to shifted spectrums, obtained by using the calculated carrier frequencies, along with the corresponding wrapped phase reconstructions. The images in (d), (h), (l), (p), and (t) report the phase difference between phase reconstructions obtained by using the SVD filter and BFF. The black squares within the wrapped phase images in (b) and (j) highlight the regions used to evaluate the NLR.

Tables (1)

Tables Icon

Table 1. Experimental Details and Performance Metrics Evaluation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T C d = σ ( A d ) μ ( A d ) ,
I = U Σ V T = i u i s i v i T ,
F ( l , k ) = { 1 i f I 2 ( l , k ) > τ 0 o t h e r w i s e ,
L 2 = min { X B F P , Y B F P , M X B F P , N X B F P , | X B F P X C | , | Y B F P Y C | } ,
F V = | d S V D d B F F | ,
N L R = ( 1 s t d ( Φ B F F ) s t d ( Φ S V D ) ) 100 ,

Metrics