Abstract

We propose and demonstrate a multicolor single-pixel digital holography technique. The intensity and phase images of an object are simultaneously obtained from the time-sequence intensity data captured using a single-pixel photodetector. Moreover, phase-structured light and phase-shifting interferometry are implemented using only a spatial light modulator without any mechanical movements. The adopted configuration dramatically simplifies the optical setup by removing both imaging optics and the resultant chromatic aberration. The effectiveness of the proposed technique is demonstrated numerically and experimentally.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-pixel digital holography with phase-encoded illumination

Lluís Martínez-León, Pere Clemente, Yutaka Mori, Vicent Climent, Jesús Lancis, and Enrique Tajahuerce
Opt. Express 25(5) 4975-4984 (2017)

Multiwavelength-selective phase-shifting digital holography without mechanical scanning

Tatsuki Tahara and Yutaka Endo
Appl. Opt. 58(34) G218-G225 (2019)

Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts

Tatsuki Tahara, Reo Otani, Kaito Omae, Takuya Gotohda, Yasuhiko Arai, and Yasuhiro Takaki
Opt. Express 25(10) 11157-11172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
    [Crossref]
  3. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  4. M. K. Kim, Digital Holographic Microscopy, Springer Series in Optical Sciences (Springer, 2011), Vol. 162.
  5. P. Picart and J. Li, Digital Holography (Wiley, 2012).
  6. T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography (Cambridge University, 2013).
  7. T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
    [Crossref]
  8. T.-C. Poon, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
    [Crossref]
  9. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
    [Crossref]
  10. E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38, 1319–1321 (2013).
    [Crossref]
  11. T. Noda, S. Kawata, and S. Minami, “Three-dimensional phase-contrast imaging by a computed-tomography microscope,” Appl. Opt. 31, 670–674 (1992).
    [Crossref]
  12. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
    [Crossref]
  13. T. Kozacki, R. Krajewski, and M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17, 13758–13767 (2009).
    [Crossref]
  14. G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
    [Crossref]
  15. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
    [Crossref]
  16. A. Brodoline, N. Rawat, D. Alexandre, N. Cubedo, and M. Gross, “4D compressive sensing holographic microscopy imaging of small moving objects,” Opt. Lett. 44, 2827–2830 (2019).
    [Crossref]
  17. P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J.-C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49, 320–328 (2010).
    [Crossref]
  18. M. Leclercq and P. Picart, “Method for chromatic error compensation in digital color holographic imaging,” Opt. Express 21, 26456–26467 (2013).
    [Crossref]
  19. T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
    [Crossref]
  20. T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
    [Crossref]
  21. T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
    [Crossref]
  22. K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H283 (2011).
    [Crossref]
  23. K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
    [Crossref]
  24. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  25. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  26. K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22, 897–902 (2015).
    [Crossref]
  27. M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
    [Crossref]
  28. Y. August, A. Stern, and D. G. Blumberg, “Single-pixel spectroscopy via compressive sampling,” in Classical Optics, OSA, Washington, D.C., USA, 2014, paper CTu2C.2.
  29. F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
    [Crossref]
  30. K. Guo, S. Jiang, and G. Zheng, “Multilayer fluorescence imaging on a single-pixel detector,” Biomed. Opt. Express 7, 2425–2431 (2016).
    [Crossref]
  31. G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Opt. Express 21, 23822–23837 (2013).
    [Crossref]
  32. M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref]
  33. E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamicscattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
    [Crossref]
  34. T.-C. Poon, Optical Scanning Holography with MATLAB® (Springer, 2007).
  35. T. C. Poon and A. Korpel, “Optical transfer function of an acousto-optic heterodyning image processor,” Opt. Lett. 4, 317–319 (1979).
    [Crossref]
  36. J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
    [Crossref]
  37. H. Kim, Y. S. Kim, and T. Kim, “Full-color optical scanning holography with common red, green, and blue channels [invited],” Appl. Opt. 55, A17–A21 (2016).
    [Crossref]
  38. P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
    [Crossref]
  39. P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
    [Crossref]
  40. L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
    [Crossref]
  41. W. Zhou and A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures,” IEEE Signal Process. Mag. 26(1), 98–117 (2009).
    [Crossref]

2019 (2)

A. Brodoline, N. Rawat, D. Alexandre, N. Cubedo, and M. Gross, “4D compressive sensing holographic microscopy imaging of small moving objects,” Opt. Lett. 44, 2827–2830 (2019).
[Crossref]

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

2018 (3)

K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
[Crossref]

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

2017 (2)

L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

2016 (3)

2015 (3)

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22, 897–902 (2015).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

2014 (1)

2013 (5)

2012 (2)

G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

T. Kozacki, R. Krajewski, and M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17, 13758–13767 (2009).
[Crossref]

W. Zhou and A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures,” IEEE Signal Process. Mag. 26(1), 98–117 (2009).
[Crossref]

2008 (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2007 (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

2000 (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

1999 (1)

1995 (1)

T.-C. Poon, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

1992 (1)

1979 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Akamatsu, T.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Alexandre, D.

Andrés, P.

Arai, Y.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

Arima, Y.

August, Y.

Y. August, A. Stern, and D. G. Blumberg, “Single-pixel spectroscopy via compressive sampling,” in Classical Optics, OSA, Washington, D.C., USA, 2014, paper CTu2C.2.

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Banerjee, P. P.

Baraniuk, R.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Blumberg, D. G.

Y. August, A. Stern, and D. G. Blumberg, “Single-pixel spectroscopy via compressive sampling,” in Classical Optics, OSA, Washington, D.C., USA, 2014, paper CTu2C.2.

Bovik, A. C.

W. Zhou and A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures,” IEEE Signal Process. Mag. 26(1), 98–117 (2009).
[Crossref]

Brodoline, A.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Clemente, P.

Climent, V.

Cubedo, N.

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Davenport, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Desse, J. M.

Duarte, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Durán, V.

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamicscattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Edgar, M. P.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Fernández-Alonso, M.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Gibson, G. M.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Gross, M.

Guo, K.

Hayasaki, Y.

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

Hoshiba, T.

Howell, J. C.

Howland, G. A.

Irles, E.

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamicscattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

Ito, T.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Iwata, T.

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22, 897–902 (2015).
[Crossref]

Javidi, B.

Jiang, S.

Kakue, T.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Kawai, H.

Kawata, S.

Kelly, K.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kikunaga, S.

Kim, H.

Kim, M. K.

M. K. Kim, Digital Holographic Microscopy, Springer Series in Optical Sciences (Springer, 2011), Vol. 162.

Kim, T.

Kim, Y. S.

Korpel, A.

Kozacki, T.

Krajewski, R.

Kujawinska, M.

Lamb, R.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Lancis, J.

Laska, J.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Leclercq, M.

Leith, E. N.

Li, J.

P. Picart and J. Li, Digital Holography (Wiley, 2012).

Li, J.-C.

Liu, J.-P.

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography (Cambridge University, 2013).

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Lum, D. J.

Martínez-León, L.

Matoba, O.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Matsushima, K.

Minami, S.

Mizutani, Y.

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22, 897–902 (2015).
[Crossref]

Mori, R.

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

Mori, Y.

Mounier, D.

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Nakae, K.

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22, 897–902 (2015).
[Crossref]

Nakahara, S.

Nehmetallah, G.

Noda, T.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Ohzu, H.

Otani, R.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Padgett, M. J.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Picart, P.

Poon, T. C.

Poon, T.-C.

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

T.-C. Poon, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography (Cambridge University, 2013).

T.-C. Poon, Optical Scanning Holography with MATLAB® (Springer, 2007).

Quan, X.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Radwell, N.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Rawat, N.

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Shibuya, K.

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22, 897–902 (2015).
[Crossref]

Shimobaba, T.

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Soldevila, F.

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamicscattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

Sonobe, N.

Stern, A.

Y. August, A. Stern, and D. G. Blumberg, “Single-pixel spectroscopy via compressive sampling,” in Classical Optics, OSA, Washington, D.C., USA, 2014, paper CTu2C.2.

Sun, B.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Sun, M.-J.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Sun, T.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tahara, T.

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

Tajahuerce, E.

Takaki, Y.

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40, 2810–2813 (2015).
[Crossref]

Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
[Crossref]

Takhar, D.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tankam, P.

Torres-Company, V.

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Upatnieks, J.

Ware, M. R.

Watanabe, E.

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Zheng, G.

Zhou, W.

W. Zhou and A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures,” IEEE Signal Process. Mag. 26(1), 98–117 (2009).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (6)

Appl. Phys. B (1)

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113, 551–558 (2013).
[Crossref]

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Appl. Sci. (1)

J.-P. Liu, T. Tahara, Y. Hayasaki, and T.-C. Poon, “Incoherent digital holography: a review,” Appl. Sci. 8, 143 (2018).
[Crossref]

Biomed. Opt. Express (1)

IEEE Signal Process. Mag. (2)

W. Zhou and A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures,” IEEE Signal Process. Mag. 26(1), 98–117 (2009).
[Crossref]

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

J. Opt. (1)

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

Microscopy (1)

T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging applications: a review,” Microscopy 67, 55–67 (2018).
[Crossref]

Nat. Commun. (1)

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Nat. Photonics (1)

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Opt. Commun. (1)

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Opt. Eng. (1)

T.-C. Poon, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Opt. Lett. (5)

Opt. Rev. (1)

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22, 897–902 (2015).
[Crossref]

Phys. Rev. A (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Other (5)

Y. August, A. Stern, and D. G. Blumberg, “Single-pixel spectroscopy via compressive sampling,” in Classical Optics, OSA, Washington, D.C., USA, 2014, paper CTu2C.2.

T.-C. Poon, Optical Scanning Holography with MATLAB® (Springer, 2007).

M. K. Kim, Digital Holographic Microscopy, Springer Series in Optical Sciences (Springer, 2011), Vol. 162.

P. Picart and J. Li, Digital Holography (Wiley, 2012).

T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography (Cambridge University, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Optical system for the proposed technique. Switches to the lasers are sequentially turned on and off.
Fig. 2.
Fig. 2. Experimental setup.
Fig. 3.
Fig. 3. Experimental results. Reconstructed images obtained by using the four-step phase-shifting color digital holography method with $1\,\,{\rm K} \times 1\,\,{\rm K}$ pixels [(a) color-synthesized intensity and (b) phase images], the four-step phase-shifting color digital holography method with ${16} \times {16}$ pixels [(c) color-synthesized intensity and (d) phase images], and the proposed technique [(e) color-synthesized intensity and (f) phase images].
Fig. 4.
Fig. 4. Numerical simulation. Color object [(a) amplitude and (b) phase images] and reconstructed images [(c) amplitude and (d) phase images] from a subset of sampling patterns ( $ M = 4,\!096 $ , 16,384, and 36,864). (e) Reconstruction PSNR and (f) SSIM versus the number of sampling patterns.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I λ , i , ϕ = A λ S | O ( x , y ; λ ) + h i ( x , y ) e j ϕ | 2 d x d y ,
u λ , i = 1 4 [ ( I λ , i , 0 I λ , i , π ) + j ( I λ , i , π / 2 I λ , i , 3 π / 2 ) ] = S h i ( x , y ) O ( x , y ; λ ) d x d y ,
u λ , i = h i o λ ,
u λ = H o λ .

Metrics