Abstract

The computer-generated hologram (CGH) has wide use in many fields but often comes at a high cost due to complex proprietary equipment. For this research, we developed a new robust computational method, and applied and tested common computer-to-film (CtF) technology to create affordable and high-resolution prints of CGHs that can be used primarily in security printing. The proposed method also allows for quick authentication with no need for a complex optical setup, while offering high-level security analysis through a simple yet robust system. Beyond the computational method, we based our research on testing material, protocol, and the optical measuring setup and derived an all-in-one, highly defined, conclusive, usable method capable of making every CGH unique.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system

Naoki Takada, Tomoyoshi Shimobaba, Hirotaka Nakayama, Atsushi Shiraki, Naohisa Okada, Minoru Oikawa, Nobuyuki Masuda, and Tomoyoshi Ito
Appl. Opt. 51(30) 7303-7307 (2012)

Resolution matching in laser direct printing of a computer-generated hologram

Jian Su, Xingpeng Yan, Yingqing Huang, Yibei Chen, and Xiaoyu Jiang
J. Opt. Soc. Am. B 34(5) B1-B8 (2017)

Calculation method for computer-generated holograms with cylindrical basic object light by using a graphics processing unit

Hironobu Sakata, Kouhei Hosoyachi, Chan-Young Yang, and Yuji Sakamoto
Appl. Opt. 50(34) H306-H314 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Tsang, T.-C. Poon, W.-K. Cheung, and J.-P. Liu, “Computer generation of binary Fresnel holography,” Appl. Opt. 50, B88–B95 (2011).
    [Crossref]
  2. A. J. Lee and D. P. Casasent, “Computer generated hologram recording using a laser printer,” Appl. Opt. 26, 136–138 (1987).
    [Crossref]
  3. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [Crossref]
  4. J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
    [Crossref]
  5. V. Guarnieri and F. Francini, “Computer-generated holograms (CGH) realization: the integration of dedicated software tool with digital slides printer,” Proc. SPIE 3190, 393–401 (2004).
    [Crossref]
  6. L. C. Ferri, “Visualization of 3D information with digital holography using laser printers,” Comput. Graph. 25, 309–321 (2001).
    [Crossref]
  7. I. Moreno, A. Martinez-Gaćia, L. Nieradko, J. Albero, and C. Gorecki, “Low cost production of computer-generated holograms: from design to optical evaluation,” J. Eur. Opt. Soc. 5, 10011 (2010).
    [Crossref]
  8. U. Schnars and W. Jueptner, eds., Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005), pp. 1–164.
  9. F. Depasse, M. A. Paesler, D. Courjon, and J. M. Vigoureux, “Huygens–Fresnel principle in the near field,” Opt. Lett. 20, 234 (1995).
    [Crossref]
  10. V. Cviljušac, A. Divjak, and D. Modrić, “Computer generated holograms of 3D points cloud,” Tehnicki vjesnik—Technical Gazette 25, 1020–1027 (2018).
  11. U. Schnars and W. P. Jüptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
    [Crossref]
  12. A. Kozma and J. S. Zelenka, “Effect of film resolution and size in holography,” J. Opt. Soc. Am. 60, 34 (1970).
    [Crossref]
  13. K. Itrić, D. Modrić, and M. Milković, “Edge spread function for the paper-ink system,” Nordic Pulp Paper Res. J. 33, 542–547 (2018).
    [Crossref]
  14. M. K. Kim, “Phase-shifting digital holography,” in Springer Ser. Opt. Sci. (Springer, 2011), Vol. 162, pp. 95–108.

2018 (3)

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

V. Cviljušac, A. Divjak, and D. Modrić, “Computer generated holograms of 3D points cloud,” Tehnicki vjesnik—Technical Gazette 25, 1020–1027 (2018).

K. Itrić, D. Modrić, and M. Milković, “Edge spread function for the paper-ink system,” Nordic Pulp Paper Res. J. 33, 542–547 (2018).
[Crossref]

2011 (1)

2010 (1)

I. Moreno, A. Martinez-Gaćia, L. Nieradko, J. Albero, and C. Gorecki, “Low cost production of computer-generated holograms: from design to optical evaluation,” J. Eur. Opt. Soc. 5, 10011 (2010).
[Crossref]

2004 (1)

V. Guarnieri and F. Francini, “Computer-generated holograms (CGH) realization: the integration of dedicated software tool with digital slides printer,” Proc. SPIE 3190, 393–401 (2004).
[Crossref]

2001 (1)

L. C. Ferri, “Visualization of 3D information with digital holography using laser printers,” Comput. Graph. 25, 309–321 (2001).
[Crossref]

1995 (1)

1994 (1)

1987 (1)

1970 (1)

1969 (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Albero, J.

I. Moreno, A. Martinez-Gaćia, L. Nieradko, J. Albero, and C. Gorecki, “Low cost production of computer-generated holograms: from design to optical evaluation,” J. Eur. Opt. Soc. 5, 10011 (2010).
[Crossref]

Casasent, D. P.

Chen, Y.

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Cheung, W.-K.

Courjon, D.

Cviljušac, V.

V. Cviljušac, A. Divjak, and D. Modrić, “Computer generated holograms of 3D points cloud,” Tehnicki vjesnik—Technical Gazette 25, 1020–1027 (2018).

Depasse, F.

Divjak, A.

V. Cviljušac, A. Divjak, and D. Modrić, “Computer generated holograms of 3D points cloud,” Tehnicki vjesnik—Technical Gazette 25, 1020–1027 (2018).

Ferri, L. C.

L. C. Ferri, “Visualization of 3D information with digital holography using laser printers,” Comput. Graph. 25, 309–321 (2001).
[Crossref]

Francini, F.

V. Guarnieri and F. Francini, “Computer-generated holograms (CGH) realization: the integration of dedicated software tool with digital slides printer,” Proc. SPIE 3190, 393–401 (2004).
[Crossref]

Gorecki, C.

I. Moreno, A. Martinez-Gaćia, L. Nieradko, J. Albero, and C. Gorecki, “Low cost production of computer-generated holograms: from design to optical evaluation,” J. Eur. Opt. Soc. 5, 10011 (2010).
[Crossref]

Guarnieri, V.

V. Guarnieri and F. Francini, “Computer-generated holograms (CGH) realization: the integration of dedicated software tool with digital slides printer,” Proc. SPIE 3190, 393–401 (2004).
[Crossref]

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Huang, Y.

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Itric, K.

K. Itrić, D. Modrić, and M. Milković, “Edge spread function for the paper-ink system,” Nordic Pulp Paper Res. J. 33, 542–547 (2018).
[Crossref]

Jiang, X.

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Jüptner, W. P.

Kim, M. K.

M. K. Kim, “Phase-shifting digital holography,” in Springer Ser. Opt. Sci. (Springer, 2011), Vol. 162, pp. 95–108.

Kozma, A.

Lee, A. J.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Liu, J.-P.

Martinez-Gacia, A.

I. Moreno, A. Martinez-Gaćia, L. Nieradko, J. Albero, and C. Gorecki, “Low cost production of computer-generated holograms: from design to optical evaluation,” J. Eur. Opt. Soc. 5, 10011 (2010).
[Crossref]

Milkovic, M.

K. Itrić, D. Modrić, and M. Milković, “Edge spread function for the paper-ink system,” Nordic Pulp Paper Res. J. 33, 542–547 (2018).
[Crossref]

Modric, D.

K. Itrić, D. Modrić, and M. Milković, “Edge spread function for the paper-ink system,” Nordic Pulp Paper Res. J. 33, 542–547 (2018).
[Crossref]

V. Cviljušac, A. Divjak, and D. Modrić, “Computer generated holograms of 3D points cloud,” Tehnicki vjesnik—Technical Gazette 25, 1020–1027 (2018).

Moreno, I.

I. Moreno, A. Martinez-Gaćia, L. Nieradko, J. Albero, and C. Gorecki, “Low cost production of computer-generated holograms: from design to optical evaluation,” J. Eur. Opt. Soc. 5, 10011 (2010).
[Crossref]

Nieradko, L.

I. Moreno, A. Martinez-Gaćia, L. Nieradko, J. Albero, and C. Gorecki, “Low cost production of computer-generated holograms: from design to optical evaluation,” J. Eur. Opt. Soc. 5, 10011 (2010).
[Crossref]

Paesler, M. A.

Poon, T.-C.

Schnars, U.

Su, J.

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Tsang, P.

Vigoureux, J. M.

Yan, X.

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Zelenka, J. S.

Zhang, T.

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Appl. Opt. (3)

Appl. Sci. (1)

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8, 851 (2018).
[Crossref]

Comput. Graph. (1)

L. C. Ferri, “Visualization of 3D information with digital holography using laser printers,” Comput. Graph. 25, 309–321 (2001).
[Crossref]

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

J. Eur. Opt. Soc. (1)

I. Moreno, A. Martinez-Gaćia, L. Nieradko, J. Albero, and C. Gorecki, “Low cost production of computer-generated holograms: from design to optical evaluation,” J. Eur. Opt. Soc. 5, 10011 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

Nordic Pulp Paper Res. J. (1)

K. Itrić, D. Modrić, and M. Milković, “Edge spread function for the paper-ink system,” Nordic Pulp Paper Res. J. 33, 542–547 (2018).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

V. Guarnieri and F. Francini, “Computer-generated holograms (CGH) realization: the integration of dedicated software tool with digital slides printer,” Proc. SPIE 3190, 393–401 (2004).
[Crossref]

Tehnicki vjesnik—Technical Gazette (1)

V. Cviljušac, A. Divjak, and D. Modrić, “Computer generated holograms of 3D points cloud,” Tehnicki vjesnik—Technical Gazette 25, 1020–1027 (2018).

Other (2)

M. K. Kim, “Phase-shifting digital holography,” in Springer Ser. Opt. Sci. (Springer, 2011), Vol. 162, pp. 95–108.

U. Schnars and W. Jueptner, eds., Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005), pp. 1–164.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Visualization of the calculation method (3D point model is the logo of The Faculty of Graphic Arts, University of Zagreb).
Fig. 2.
Fig. 2. Calculated interference pattern at resolutions of 600 dpi (a), 1200 dpi (b), and 2400 dpi (c) (magnified detail in the upper right corner).
Fig. 3.
Fig. 3. Software solution flow chart: $ {I^\prime _m} $ , total intensity in one pixel; $ N $ , number of points in 3D model; $ T $ , thread; $ m $ , max number of parallel threads.
Fig. 4.
Fig. 4. Print prepress: processes and procedures between the creation of a print layout and the final print.
Fig. 5.
Fig. 5. Calculated CGH (a), microscope image of the developed CGH (b), and overlapped comparison (c).
Fig. 6.
Fig. 6. Edge quality.
Fig. 7.
Fig. 7. (a) 2D logo of The Faculty of Graphic Arts, University of Zagreb logo, (b) presented in 3D space, and (c) CGH reconstructed using the discrete FFT.
Fig. 8.
Fig. 8. Optical measuring setup: $ LS $ , light source; $ DL $ , diverging lens; $ CL $ , converging lens; $ f $ , focus; $ DS $ , digital sensor; $ CI $ , conjugate image; $ ZO $ , zero order; $ RI $ , real image.
Fig. 9.
Fig. 9. Reconstruction of holograms printed at resolutions of 600 dpi (a), 1200 dpi (b), and 2400 dpi (c).
Fig. 10.
Fig. 10. Reconstructions with the model position key set at (a) 100 mm, (b) 200 mm, (c) 300 mm, (d) 400 mm, and (e) 500 mm ( $ d = 100\;{\rm mm} $ ).
Fig. 11.
Fig. 11. Reconstruction using 400 nm laser for CGH’s wavelength attribute set at (a) 633 nm, (b) 530 nm, and (c) 400 nm.
Fig. 12.
Fig. 12. White-light CGH reconstruction with point source set at (a) $ {z_{\rm ps}} = 300\;{\rm mm} $ and 3D model at $ {z_{\rm ob}} = 300\;{\rm mm} $ , (b) $ {z_{\rm ps}} = 500\;{\rm mm} $ , and $ {z_{\rm ob}} = 300\;{\rm mm} $ and (c) enlarged image.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E r e s , k ( r i , j , t ) = E o b , k ( r i , j , t ) + E p s ( r i , j , t ) ,
I k ( r i , j ) = E r e s , k ( r i , j , t ) E r e s , k ( r i , j , t ) = I o b , k ( r i , j ) + I p s ( r i , j ) + 2 I p s ( r i , j ) I o b , k ( r i , j ) cos ( ϕ p s ( r i , j ) ϕ o b , k ( r i , j ) ) ,
I o b , k ( r i , j ) = ( E m a x | r o b , k r i , j | ) 2 , I p s ( r i , j ) = ( E m a x | r p s r i , j | ) 2 ,
ϕ o b , k ( r i , j ) = 2 π λ | r o b , k r i , j | , ϕ p s ( r i , j ) = 2 π λ | r p s r i , j | .
I i , j = k = 1 N I k ( r i , j ) .
H = [ I 1 , 1 I 1 , 2 I 1 , n I 2 , 1 I 2 , 2 I 2 , n I n , 1 I n , 2 I n , n ] ,
I t h = I m a x + I m i n 2 ,
I m a x = max { I i , j : I i , j H } , I m i n = min { I i , j : I i , j H } .
P r = C R ( 1 + F 100 ) ,
D = log 10 ( U ) ,
r e s = | | H d H m | | F

Metrics