Abstract

Based on the power spectrum of the index fluctuation with the outer scale of seawater turbulence, we develop the channel capacity of oceanic turbulence links with carrier Bessel–Gaussian vortex localized waves. By this capacity model, we investigate the influences of seawater turbulence and carrier parameters on the channel capacity. The results show that a higher rate of dissipation of kinetic energy per unit mass of fluid, larger inner scale, or lower dissipation rate of the mean-squared temperature causes the higher channel capacity; the Bessel–Gaussian localized vortex wave with a larger source transverse size, smaller Bessel cone angle, lower orbital angular momentum quantum number, or broader initial half-pulse width has stronger resistance to oceanic turbulent perturbation. This work provides a theoretical basis for realizing high-capacity oceanic optical communication with carrier Bessel–Gaussian vortex localized waves.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of modal crosstalk for communication in turbulent ocean using Lommel-Gaussian beam

Lin Yu and Yixin Zhang
Opt. Express 25(19) 22565-22574 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription