Abstract

Diffractive telescopes are one of the most promising solutions to build lightweight space telescopes with a diameter over 10 m. However, the performance of the imaging systems is inevitably degraded by the high-order diffractive light from the diffractive system. To address this problem, in this paper we mathematically deduce the imaging model, including multiple-order diffraction, by the scalar diffraction theory. After the imaging characteristics analysis, an adaptive Wiener filtering algorithm based on the principal component analysis method is proposed. The broadband imaging and deconvolution experiments are performed by the 80 mm diffractive optical telescope systems. Results demonstrate that this method increases the average gradient by at least 8.2 times and improves imaging quality and contrast. It could be a useful exploration for high-performance imaging of large-aperture and lightweight telescopes.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image restoration for synthetic aperture systems with a non-blind deconvolution algorithm via a deep convolutional neural network

Mei Hui, Yong Wu, Weiqian Li, Ming Liu, Liquan Dong, Lingqin Kong, and Yuejin Zhao
Opt. Express 28(7) 9929-9943 (2020)

Diffraction-limited step-zoom telescope by image restoration

José A. Araiza-Durán, Esteban Luna, Alejandro Cornejo-Rodríguez, and Erika Sohn
Appl. Opt. 54(32) 9462-9468 (2015)

AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data

Erik F. Y. Hom, Franck Marchis, Timothy K. Lee, Sebastian Haase, David A. Agard, and John W. Sedat
J. Opt. Soc. Am. A 24(6) 1580-1600 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription