Abstract

We report the development of an improved spherical mirror multipass-cell-based interband cascade laser (ICL) spectrometer for ambient formaldehyde (HCHO) detection. The multipass cell consists of two easily manufactured spherical mirrors that are low cost, and have a simple structure, large mirror area utilization, and dense spot pattern. Optical interference caused by the multipath cell was largely reduced, resulting in good sensitivity. Using wavelength modulation spectroscopy (WMS), a detection precision (${1} \sigma $) of 51 pptv in 10 s was achieved with an absorption pathlength of 96 m, which compared favorably with the performance of other state-of-the-art instruments. The precision can be further improved by using a long absorption pathlength configuration and by removing fringe-like optical noise caused by the collimation lens. Ambient application of the developed spectrometer was demonstrated.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell

Lei Dong, Yajun Yu, Chunguang Li, Stephen So, and Frank K. Tittel
Opt. Express 23(15) 19821-19830 (2015)

Sensitive acetone detection with a mid-IR interband cascade laser and wavelength modulation spectroscopy

Jinbao Xia, Feng Zhu, Alexandre A. Kolomenskii, James Bounds, Sasa Zhang, Mahmood Amani, Liam J. Fernyhough, and Hans A. Schuessler
OSA Continuum 2(3) 640-654 (2019)

Dual interband cascade laser based trace-gas sensor for environmental monitoring

Gerard Wysocki, Yury Bakhirkin, Stephen So, Frank K. Tittel, Cory J. Hill, Rui Q. Yang, and Matthew P. Fraser
Appl. Opt. 46(33) 8202-8210 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
    [Crossref]
  2. R. Meller and G. K. Moortgat, “Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323  K in the wavelength range 225-375  nm,” J. Geophys. Res. Atmos. 105(D6), 7089–7101 (2000).
    [Crossref]
  3. V. Wagner, R. von Glasow, H. Fischer, and P. J. Crutzen, “Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: a model study,” J. Geophys. Res. Atmos. 107, ACH 3-1–ACH 3-14 (2002).
    [Crossref]
  4. J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
    [Crossref]
  5. J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
    [Crossref]
  6. R. V. Martin, A. M. Fiore, and A. Van Donkelaar, “Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions,” Geophys. Res. Lett. 31, L06120 (2004).
    [Crossref]
  7. X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
    [Crossref]
  8. T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
    [Crossref]
  9. D. Trapp and C. D. Serves, “Intercomparison of formaldehyde measurements in the tropical atmosphere,” Atmos. Environ. 29, 3239–3243 (1995).
    [Crossref]
  10. B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
    [Crossref]
  11. T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
    [Crossref]
  12. S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
    [Crossref]
  13. L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
    [Crossref]
  14. C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
    [Crossref]
  15. A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
    [Crossref]
  16. J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
    [Crossref]
  17. C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
    [Crossref]
  18. D. E. Heard, ed., Analytical Techniques for Atmospheric Measurement (Blackwell, 2006).
  19. U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409–5415 (1999).
    [Crossref]
  20. J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
    [Crossref]
  21. M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
    [Crossref]
  22. J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
    [Crossref]
  23. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy-Principles and Applications (Springer-Verlag, 2008).
  24. A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
    [Crossref]
  25. C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
    [Crossref]
  26. B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
    [Crossref]
  27. M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
    [Crossref]
  28. R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
    [Crossref]
  29. R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
    [Crossref]
  30. H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75, 311–316 (2002).
    [Crossref]
  31. J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
    [Crossref]
  32. P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
    [Crossref]
  33. G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
    [Crossref]
  34. R. Mficke, B. Scheumann, J. Slemr, F. Slemr, and P. Werle, “Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: an intercomparison study,” Infrared Phys. Technol. 37, 29–32 (1996).
    [Crossref]
  35. A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
    [Crossref]
  36. A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
    [Crossref]
  37. R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
    [Crossref]
  38. B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. Atmos. 108, 4350 (2003).
    [Crossref]
  39. V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
    [Crossref]
  40. Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
    [Crossref]
  41. Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
    [Crossref]
  42. M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol. 41, 259–269 (2000).
    [Crossref]
  43. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
    [Crossref]
  44. D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
    [Crossref]
  45. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
    [Crossref]
  46. A. Fried, B. Wert, J. Walega, D. Richter, and B. Potter, “Airborne measurements of formaldehyde employing a high performance tunable diode laser absorption system,” Proc. SPIE 4817, 177–183 (2002).
    [Crossref]
  47. P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85, 207–218 (2006).
    [Crossref]
  48. A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
    [Crossref]
  49. P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15, 13476–13495 (2007).
    [Crossref]
  50. P. Weibring, D. Richter, J. G. Walega, L. Rippe, and A. Fried, “Difference frequency generation spectrometer for simultaneous multispecies detection,” Opt. Express 18, 27670–27681 (2010).
    [Crossref]
  51. D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
    [Crossref]
  52. S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
    [Crossref]
  53. C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
    [Crossref]
  54. J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
    [Crossref]
  55. J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
    [Crossref]
  56. J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6, 5483–5488 (2014).
    [Crossref]
  57. L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23, 19821–19830 (2015).
    [Crossref]
  58. W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators B 221, 1062–1068 (2015).
    [Crossref]
  59. C. Yao, Z. Wang, Q. Wang, Y. Bian, C. Chen, L. Zhang, and W. Ren, “Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane,” Appl. Opt. 57, 8005–8010 (2018).
    [Crossref]
  60. S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493  nm,” Appl. Opt. 51 (25), 6009–6013 (2012).
    [Crossref]
  61. K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
    [Crossref]
  62. Q. He, C. Zheng, M. Lou, W. Ye, Y. Wang, and F. K. Tittel, “Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electrically-modulated interband cascade laser,” Opt. Express 26, 15436–15444 (2018).
    [Crossref]
  63. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics (Springer, 2003), Vol. 89, pp. 445–516.
  64. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
    [Crossref]
  65. S. So and D. Thomazy, “Novel spherical mirror multipass cells with improved spot pattern density for gas sensing,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), paper CW3B.6.
  66. S. So and D. Thomazy, “Multipass cell using spherical mirrors while achieving dense spot patterns,” U.S. patentUS20120242989A1 (27September2012).
  67. K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
    [Crossref]
  68. K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
    [Crossref]
  69. S. Ozharar and A. Sennaroglu, “Mirrors with designed spherical aberration for multi-pass cavities,” Opt. Lett. 42, 1935–1938 (2017).
    [Crossref]
  70. R. Cui, L. Dong, H. Wu, S. Li, X. Yin, L. Zhang, W. Ma, W. Yin, and F. K. Tittel, “Calculation model of dense spot pattern multipass cells based on a spherical mirror aberration,” Opt. Lett. 44, 1108–1111 (2019).
    [Crossref]
  71. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,”Appl. Opt. 4, 883–891 (1964).
    [Crossref]
  72. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [Crossref]
  73. J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
    [Crossref]
  74. A. L. Vitushkin and L. F. Vitushkin, “Design of a multipass optical cell based on the use of shifted corner cubes and right-angle prisms,” Appl. Opt. 37, 162–165 (1998).
    [Crossref]
  75. J. Ofner, H. Kruger, and C. Zetzsch, “Circular multireflection cell for optical spectroscopy,” Appl. Opt. 49, 5001–5004 (2010).
    [Crossref]
  76. Z. Yang, Y. Guo, X. Ming, and L. Sun, “Generalized optical design of the double-row circular multi-pass cell,” Sensors 18, 2680 (2018).
    [Crossref]
  77. K. Chen, H. Yang, L. Sun, and G. Jin, “Generalized method for calculating astigmatism of the unit-magnification multipass system,” Appl. Opt. 49, 1964–1971 (2010).
    [Crossref]
  78. C. Robert, “Simple, stable, and compact multiple-reflection optical cell for very long optical paths,” Appl. Opt. 46, 5408–5418 (2007).
    [Crossref]
  79. W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
    [Crossref]
  80. P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
    [Crossref]
  81. C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247–264 (2006).
    [Crossref]
  82. W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
    [Crossref]
  83. R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33  µm diode laser and wavelength modulation spectroscopy,” Opt. Express 26, 24318–24328 (2018).
    [Crossref]
  84. L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108, 011106 (2016).
    [Crossref]
  85. C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
    [Crossref]

2019 (2)

R. Cui, L. Dong, H. Wu, S. Li, X. Yin, L. Zhang, W. Ma, W. Yin, and F. K. Tittel, “Calculation model of dense spot pattern multipass cells based on a spherical mirror aberration,” Opt. Lett. 44, 1108–1111 (2019).
[Crossref]

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

2018 (5)

Z. Yang, Y. Guo, X. Ming, and L. Sun, “Generalized optical design of the double-row circular multi-pass cell,” Sensors 18, 2680 (2018).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33  µm diode laser and wavelength modulation spectroscopy,” Opt. Express 26, 24318–24328 (2018).
[Crossref]

C. Yao, Z. Wang, Q. Wang, Y. Bian, C. Chen, L. Zhang, and W. Ren, “Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane,” Appl. Opt. 57, 8005–8010 (2018).
[Crossref]

Q. He, C. Zheng, M. Lou, W. Ye, Y. Wang, and F. K. Tittel, “Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electrically-modulated interband cascade laser,” Opt. Express 26, 15436–15444 (2018).
[Crossref]

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

2017 (4)

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

S. Ozharar and A. Sennaroglu, “Mirrors with designed spherical aberration for multi-pass cavities,” Opt. Lett. 42, 1935–1938 (2017).
[Crossref]

2016 (3)

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
[Crossref]

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108, 011106 (2016).
[Crossref]

2015 (7)

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
[Crossref]

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23, 19821–19830 (2015).
[Crossref]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators B 221, 1062–1068 (2015).
[Crossref]

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
[Crossref]

2014 (2)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6, 5483–5488 (2014).
[Crossref]

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

2013 (4)

P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
[Crossref]

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

2012 (4)

S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493  nm,” Appl. Opt. 51 (25), 6009–6013 (2012).
[Crossref]

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
[Crossref]

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

2011 (2)

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[Crossref]

2010 (4)

2009 (1)

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

2008 (2)

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

2007 (5)

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15, 13476–13495 (2007).
[Crossref]

J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
[Crossref]

C. Robert, “Simple, stable, and compact multiple-reflection optical cell for very long optical paths,” Appl. Opt. 46, 5408–5418 (2007).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

2006 (4)

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247–264 (2006).
[Crossref]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85, 207–218 (2006).
[Crossref]

A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
[Crossref]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[Crossref]

2005 (3)

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
[Crossref]

2004 (3)

R. V. Martin, A. M. Fiore, and A. Van Donkelaar, “Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions,” Geophys. Res. Lett. 31, L06120 (2004).
[Crossref]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
[Crossref]

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
[Crossref]

2003 (1)

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. Atmos. 108, 4350 (2003).
[Crossref]

2002 (5)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

A. Fried, B. Wert, J. Walega, D. Richter, and B. Potter, “Airborne measurements of formaldehyde employing a high performance tunable diode laser absorption system,” Proc. SPIE 4817, 177–183 (2002).
[Crossref]

V. Wagner, R. von Glasow, H. Fischer, and P. J. Crutzen, “Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: a model study,” J. Geophys. Res. Atmos. 107, ACH 3-1–ACH 3-14 (2002).
[Crossref]

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75, 311–316 (2002).
[Crossref]

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

2001 (1)

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[Crossref]

2000 (5)

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[Crossref]

M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol. 41, 259–269 (2000).
[Crossref]

R. Meller and G. K. Moortgat, “Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323  K in the wavelength range 225-375  nm,” J. Geophys. Res. Atmos. 105(D6), 7089–7101 (2000).
[Crossref]

S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
[Crossref]

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

1999 (1)

U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409–5415 (1999).
[Crossref]

1998 (2)

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[Crossref]

A. L. Vitushkin and L. F. Vitushkin, “Design of a multipass optical cell based on the use of shifted corner cubes and right-angle prisms,” Appl. Opt. 37, 162–165 (1998).
[Crossref]

1997 (3)

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
[Crossref]

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

1996 (2)

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

R. Mficke, B. Scheumann, J. Slemr, F. Slemr, and P. Werle, “Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: an intercomparison study,” Infrared Phys. Technol. 37, 29–32 (1996).
[Crossref]

1995 (1)

D. Trapp and C. D. Serves, “Intercomparison of formaldehyde measurements in the tropical atmosphere,” Atmos. Environ. 29, 3239–3243 (1995).
[Crossref]

1989 (1)

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[Crossref]

1988 (1)

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

1964 (2)

Abad, G. G.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Abd-Alrahman, C.

R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
[Crossref]

Acir, I.

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

Ajtai, T.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[Crossref]

Akishima, K.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Alicke, B.

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

Allan, B. J.

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

Alvarez, S.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

Apel, E.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Apel, E. C.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Arkinson, H. L.

M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
[Crossref]

Arnts, R. R.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Ashfold, M. N. R.

F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
[Crossref]

Astorga-Lloréns, C.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Atlas, E.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Attwood, A. R.

R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
[Crossref]

Bader, W.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Bailey, S. A.

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
[Crossref]

Bakhirkin, Y. A.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[Crossref]

Barbe, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Barry McManus, J.

J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
[Crossref]

Bauer, A.

Bauer Aquino, C. A.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Bauwens, M.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Becker, C.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Bernard, F.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

Bernath, P. F.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Bian, Y.

Birk, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Blumenstock, T.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Boersma, K. F.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Bossmeyer, J.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Boudon, V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Bovy, B.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Boyle, E. S.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Bozem, H.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

Braathen, G. O.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Brassington, D. J.

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

Brauers, T.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Brown, S. S.

R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
[Crossref]

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Burrows, J. P.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

Calvert, J.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Campargue, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Campos, T.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Cantrell, C. A.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Cárdenas, L. M.

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

Carras, M.

P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
[Crossref]

Catoire, V.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

Cazorla, M.

M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
[Crossref]

Cha, H.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Chance, K.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Chance, K. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Chen, C.

Chen, K.

Chen, W.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Chen, X.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Coe, H.

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

Coens, K. L.

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

Crutzen, P. J.

V. Wagner, R. von Glasow, H. Fischer, and P. J. Crutzen, “Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: a model study,” J. Geophys. Res. Atmos. 107, ACH 3-1–ACH 3-14 (2002).
[Crossref]

Császár, A. G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Cui, R.

Curl, R. F.

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

D’Amato, F.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
[Crossref]

Daele, V.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

Dahnke, H.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75, 311–316 (2002).
[Crossref]

Dasgupta, P.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Dasgupta, P. K.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Davis, P. R.

F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
[Crossref]

de Gouw, J. A.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

De Mazière, M.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

De Rosa, M.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
[Crossref]

deGouw, J. A.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Demerjian, K. L.

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
[Crossref]

Devi, V. M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

DiGangi, J. P.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

Dommen, J.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Dong, L.

Dong, M.

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

Dong, S.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Drouin, B. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Drummond, J. R.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[Crossref]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
[Crossref]

Duncan, B.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Dyroff, C.

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85, 207–218 (2006).
[Crossref]

Erdelyi, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[Crossref]

Eyglunent, G.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

Fang, B.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

Fasci, E.

P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
[Crossref]

Fayt, C.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Fehsenfeld, F. C.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

Fiore, A. M.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

R. V. Martin, A. M. Fiore, and A. Van Donkelaar, “Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions,” Geophys. Res. Lett. 31, L06120 (2004).
[Crossref]

Fischer, H.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6, 5483–5488 (2014).
[Crossref]

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

V. Wagner, R. von Glasow, H. Fischer, and P. J. Crutzen, “Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: a model study,” J. Geophys. Res. Atmos. 107, ACH 3-1–ACH 3-14 (2002).
[Crossref]

Fischer, M.

Fittschen, C.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

Flaud, J.-M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Flores, J. M.

R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
[Crossref]

Franco, B.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Fraser, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[Crossref]

S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
[Crossref]

Fried, A.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, L. Rippe, and A. Fried, “Difference frequency generation spectrometer for simultaneous multispecies detection,” Opt. Express 18, 27670–27681 (2010).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15, 13476–13495 (2007).
[Crossref]

A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
[Crossref]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85, 207–218 (2006).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247–264 (2006).
[Crossref]

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. Atmos. 108, 4350 (2003).
[Crossref]

A. Fried, B. Wert, J. Walega, D. Richter, and B. Potter, “Airborne measurements of formaldehyde employing a high performance tunable diode laser absorption system,” Proc. SPIE 4817, 177–183 (2002).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[Crossref]

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[Crossref]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
[Crossref]

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics (Springer, 2003), Vol. 89, pp. 445–516.

Friedfeld, S.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[Crossref]

S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
[Crossref]

Furtenbacher, T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Gai, Y.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

Galle, B.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Galloway, M. M.

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

Gamache, R. R.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Gao, X.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

García, O.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Gilman, J. B.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

Gilpin, T.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
[Crossref]

Gluszek, A. K.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108, 011106 (2016).
[Crossref]

Goldstein, A. H.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Gordon, I. E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Gorrotxategi-Carbajo, P.

P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
[Crossref]

Graus, M.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

Griffin, R. J.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108, 011106 (2016).
[Crossref]

Grilli, R.

R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
[Crossref]

Grutter, M.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Gu, X.

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

Guarin, C.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Guenther, A.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Guo, Y.

Z. Yang, Y. Guo, X. Ming, and L. Sun, “Generalized optical design of the double-row circular multi-pass cell,” Sensors 18, 2680 (2018).
[Crossref]

Gurk, C.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

Hagopian, J. G.

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

Hak, C.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Hanisco, T. F.

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
[Crossref]

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Hannigan, J.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Hansel, A.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Harder, J. W.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Harris, G. W.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[Crossref]

Harrison, J. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Hartmann, J.-M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Hase, F.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

He, Q.

Heckel, A.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

Heikes, B.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Helleis, F.

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

Hendrick, F.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Henry, B.

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. Atmos. 108, 4350 (2003).
[Crossref]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[Crossref]

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[Crossref]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
[Crossref]

Henry, S. B.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Hering, P.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75, 311–316 (2002).
[Crossref]

Hermans, C.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Herndon, S.

J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
[Crossref]

Herndon, S. C.

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
[Crossref]

Herriott, D.

Herriott, D. R.

Hill, C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Hill, C. J.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[Crossref]

Hodges, J. T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Höfling, S.

Holland, F.

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

Holloway, J.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Holloway, J. S.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

Hopkins, B.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Hornbrook, R. S.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Hottle, J. R.

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

Hu, C.

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

Huang, M.

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

Huang, T.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Huang, W.

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

Huisman, A. J.

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

Iguchi, T.

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[Crossref]

Iraci, L. T.

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

Jacob, D. J.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Jacquemart, D.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Jahjah, M.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

Jia, S.

Jiménez, R.

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

Jin, G.

Jin, X.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Johnson, T. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Jolly, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Jones, N.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Junkermann, W.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

Kaiser, J.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

Kajii, Y.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Kammrath, A.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

Karecki, D.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Karl, T.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Karman, T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Kaser, L.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Kassi, S.

R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
[Crossref]

Kern, C.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Keutsch, F. N.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

Kim, S.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Kivi, R.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Kleffmann, J.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Kleindienst, T.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Kleindienst, T. E.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Kleiner, I.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Kleinermanns, K.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75, 311–316 (2002).
[Crossref]

Kluczynski, P.

Klüpfel, Th.

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

Kochanov, R. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Koeth, J.

Kogelnik, H.

Kok, G. L.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Kompfner, R.

Königstedt, R.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

Konno, M.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Koppmann, R.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Kormann, R.

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

Koshelev, D.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Kowalski, K.

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

Kruger, H.

Krzempek, K.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

Kyuberis, A. A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Lamsal, L. N.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Lancaster, D.

S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
[Crossref]

Lancaster, D. G.

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Langerock, B.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Larsen, B. R.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Lazrus, A. L.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Lee, Y. N.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Lee, Y.-N.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Lejeune, B.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Leleux, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[Crossref]

S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
[Crossref]

Lelieveld, J.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

Lewicki, R.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

Li, C.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108, 011106 (2016).
[Crossref]

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23, 19821–19830 (2015).
[Crossref]

Li, J.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6, 5483–5488 (2014).
[Crossref]

Li, S.

Li, X.

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

Li, Y. Q.

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
[Crossref]

Lind, J. A.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Liu, K.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

Lonneman, W.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Loos, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Lörzer, J. C.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Lou, M.

Lundqvist, S.

Luo, L.

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators B 221, 1062–1068 (2015).
[Crossref]

Lutsch, E.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Lyulin, O. M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Ma, W.

Mackay, G.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Mackay, G. I.

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[Crossref]

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Mahieu, E.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Maisons, G.

P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
[Crossref]

Makarova, M.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Marais, E. A.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Marrero, J. E.

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

Martin, R. V.

R. V. Martin, A. M. Fiore, and A. Van Donkelaar, “Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions,” Geophys. Res. Lett. 31, L06120 (2004).
[Crossref]

Massie, S. T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Maudlin, R. L.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Maurer, K.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
[Crossref]

Mayne, L. K.

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[Crossref]

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Mazzinghi, P.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
[Crossref]

McCully, B.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

McManus, J. B.

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[Crossref]

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
[Crossref]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
[Crossref]

Mébarki, Y.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

Meier, R.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Méjean, G.

R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
[Crossref]

Melander, N.

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Meller, R.

R. Meller and G. K. Moortgat, “Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323  K in the wavelength range 225-375  nm,” J. Geophys. Res. Atmos. 105(D6), 7089–7101 (2000).
[Crossref]

Mellouki, A.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

Mellqvist, J.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Metzger, J.-M.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Mficke, R.

R. Mficke, B. Scheumann, J. Slemr, F. Slemr, and P. Werle, “Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: an intercomparison study,” Infrared Phys. Technol. 37, 29–32 (1996).
[Crossref]

Mikhailenko, S. N.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Miller, C. C.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Miller, J. H.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[Crossref]

Min, K. E.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Mine, Y.

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Ming, X.

Z. Yang, Y. Guo, X. Ming, and L. Sun, “Generalized optical design of the double-row circular multi-pass cell,” Sensors 18, 2680 (2018).
[Crossref]

Miyamura, K.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Moazzen-Ahmadi, N.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Moortgat, G. K.

R. Meller and G. K. Moortgat, “Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323  K in the wavelength range 225-375  nm,” J. Geophys. Res. Atmos. 105(D6), 7089–7101 (2000).
[Crossref]

Mopper, K.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Müller, H. S. P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Müller, J.-F.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Müller, K.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Murray, L. T.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Mürtz, M.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75, 311–316 (2002).
[Crossref]

Nähle, L.

Nakashima, Y.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Naumenko, O. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Nelson, D. D.

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[Crossref]

J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
[Crossref]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
[Crossref]

Nelson Jr, D. D.

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

Nero, C. M.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Nikitin, A. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Notholt, J.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Ofner, J.

Ordóñez, C.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Orr-Ewing, A. J.

F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
[Crossref]

Ortega, I.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Ozharar, S.

Palm, M.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Parchatka, U.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6, 5483–5488 (2014).
[Crossref]

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

Park, J.-H.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Paton-Walsh, C.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Pei, S.

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

Peischl, J.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Penkett, S. A.

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

Perevalov, V. I.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Perrin, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Petrov, K. P.

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Pinardi, G.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Plane, J. M. C.

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

Platt, U.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409–5415 (1999).
[Crossref]

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy-Principles and Applications (Springer-Verlag, 2008).

Poberovskii, A.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Pollack, I. B.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Polyansky, O. L.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Pope, F. D.

F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
[Crossref]

Potter, B.

A. Fried, B. Wert, J. Walega, D. Richter, and B. Potter, “Airborne measurements of formaldehyde employing a high performance tunable diode laser absorption system,” Proc. SPIE 4817, 177–183 (2002).
[Crossref]

Prévôt, A. S. H.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Pundt, I.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

Rappenglueck, B.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

Rauenbuehler, S.

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. Atmos. 108, 4350 (2003).
[Crossref]

Rehle, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[Crossref]

S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
[Crossref]

Ren, W.

C. Yao, Z. Wang, Q. Wang, Y. Bian, C. Chen, L. Zhang, and W. Ren, “Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane,” Appl. Opt. 57, 8005–8010 (2018).
[Crossref]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators B 221, 1062–1068 (2015).
[Crossref]

Rettinger, M.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Rey, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Richter, A.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

Richter, D.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, L. Rippe, and A. Fried, “Difference frequency generation spectrometer for simultaneous multispecies detection,” Opt. Express 18, 27670–27681 (2010).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15, 13476–13495 (2007).
[Crossref]

A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
[Crossref]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85, 207–218 (2006).
[Crossref]

A. Fried, B. Wert, J. Walega, D. Richter, and B. Potter, “Airborne measurements of formaldehyde employing a high performance tunable diode laser absorption system,” Proc. SPIE 4817, 177–183 (2002).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics (Springer, 2003), Vol. 89, pp. 445–516.

Rippe, L.

Robert, C.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

C. Robert, “Simple, stable, and compact multiple-reflection optical cell for very long optical paths,” Appl. Opt. 46, 5408–5418 (2007).
[Crossref]

Robinson, J.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Rohrer, F.

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

Roller, C.

A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247–264 (2006).
[Crossref]

Romanini, D.

P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
[Crossref]

R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
[Crossref]

Rotger, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Rothman, L. S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Rudich, Y.

R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
[Crossref]

Ryerson, T. B.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Sanchez, N. P.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108, 011106 (2016).
[Crossref]

Scheumann, B.

R. Mficke, B. Scheumann, J. Slemr, F. Slemr, and P. Werle, “Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: an intercomparison study,” Infrared Phys. Technol. 37, 29–32 (1996).
[Crossref]

Schiff, H.

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Schiff, H. I.

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[Crossref]

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Schiller, C. L.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

Schnitzhofer, R.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Schulte, H. J.

Seiter, M.

M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol. 41, 259–269 (2000).
[Crossref]

Sennaroglu, A.

Servais, C.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Serves, C. D.

D. Trapp and C. D. Serves, “Intercomparison of formaldehyde measurements in the tropical atmosphere,” Atmos. Environ. 29, 3239–3243 (1995).
[Crossref]

Sewell, S.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[Crossref]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
[Crossref]

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Shallcross, D. E.

F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
[Crossref]

Sharpe, S. W.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Shepson, P. B.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Shine, K. P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Shorter, J.

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

Shorter, J. H.

J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
[Crossref]

Sigrist, M. W.

M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol. 41, 259–269 (2000).
[Crossref]

Slemr, F.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
[Crossref]

R. Mficke, B. Scheumann, J. Slemr, F. Slemr, and P. Werle, “Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: an intercomparison study,” Infrared Phys. Technol. 37, 29–32 (1996).
[Crossref]

Slemr, J.

R. Mficke, B. Scheumann, J. Slemr, F. Slemr, and P. Werle, “Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: an intercomparison study,” Infrared Phys. Technol. 37, 29–32 (1996).
[Crossref]

Smale, D.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Smedt, I. D.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Smith, C. A.

F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
[Crossref]

Smith, M.-A. H.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

So, S.

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23, 19821–19830 (2015).
[Crossref]

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

S. So and D. Thomazy, “Multipass cell using spherical mirrors while achieving dense spot patterns,” U.S. patentUS20120242989A1 (27September2012).

S. So and D. Thomazy, “Novel spherical mirror multipass cells with improved spot pattern density for gas sensing,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), paper CW3B.6.

Solomon, S. J.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Spuler, S. M.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
[Crossref]

St. Clair, J. M.

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

Starikova, E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Stavrakou, T.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

Stefanski, P.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

Steinbrecher, R.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Strandberg, A.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Stremme, W.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Strong, K.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Stutz, J.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy-Principles and Applications (Springer-Verlag, 2008).

Sun, L.

Z. Yang, Y. Guo, X. Ming, and L. Sun, “Generalized optical design of the double-row circular multi-pass cell,” Sensors 18, 2680 (2018).
[Crossref]

K. Chen, H. Yang, L. Sun, and G. Jin, “Generalized method for calculating astigmatism of the unit-magnification multipass system,” Appl. Opt. 49, 1964–1971 (2010).
[Crossref]

Sung, K.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Sussmann, R.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Swanson, A. K.

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
[Crossref]

Tan, T.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

Tan, Y.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Tanaka, K.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Tarsu, T.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

Tashkun, S. A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Taubman, M. S.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
[Crossref]

Té, Y.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Tejada, S. B.

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

Tennyson, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Thomazy, D.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

S. So and D. Thomazy, “Multipass cell using spherical mirrors while achieving dense spot patterns,” U.S. patentUS20120242989A1 (27September2012).

S. So and D. Thomazy, “Novel spherical mirror multipass cells with improved spot pattern density for gas sensing,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), paper CW3B.6.

Tillmann, R.

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Tittel, F.

A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247–264 (2006).
[Crossref]

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[Crossref]

S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
[Crossref]

Tittel, F. K.

R. Cui, L. Dong, H. Wu, S. Li, X. Yin, L. Zhang, W. Ma, W. Yin, and F. K. Tittel, “Calculation model of dense spot pattern multipass cells based on a spherical mirror aberration,” Opt. Lett. 44, 1108–1111 (2019).
[Crossref]

Q. He, C. Zheng, M. Lou, W. Ye, Y. Wang, and F. K. Tittel, “Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electrically-modulated interband cascade laser,” Opt. Express 26, 15436–15444 (2018).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33  µm diode laser and wavelength modulation spectroscopy,” Opt. Express 26, 24318–24328 (2018).
[Crossref]

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108, 011106 (2016).
[Crossref]

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23, 19821–19830 (2015).
[Crossref]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators B 221, 1062–1068 (2015).
[Crossref]

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics (Springer, 2003), Vol. 89, pp. 445–516.

Tonnesen, G. S.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Tonokura, K.

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

Toon, G.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Toon, G. C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Tran, H.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Trapp, D.

D. Trapp and C. D. Serves, “Intercomparison of formaldehyde measurements in the tropical atmosphere,” Atmos. Environ. 29, 3239–3243 (1995).
[Crossref]

Trick, S.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Tsai, C.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

Turnipseed, A.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Tyuterev, V. G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Valin, L. C.

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

Van Donkelaar, A.

R. V. Martin, A. M. Fiore, and A. Van Donkelaar, “Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions,” Geophys. Res. Lett. 31, L06120 (2004).
[Crossref]

Van Roozendael, M.

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

VanderAuwera, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Ventrillard, I.

P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
[Crossref]

R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
[Crossref]

Veres, P.

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

Vigouroux, C.

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

Vitushkin, A. L.

Vitushkin, L. F.

Volkamer, R.

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

von Basum, G.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75, 311–316 (2002).
[Crossref]

von Edlinger, M.

von Glasow, R.

V. Wagner, R. von Glasow, H. Fischer, and P. J. Crutzen, “Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: a model study,” J. Geophys. Res. Atmos. 107, ACH 3-1–ACH 3-14 (2002).
[Crossref]

Wagner, G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Wagner, V.

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

V. Wagner, R. von Glasow, H. Fischer, and P. J. Crutzen, “Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: a model study,” J. Geophys. Res. Atmos. 107, ACH 3-1–ACH 3-14 (2002).
[Crossref]

Walega, J.

A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247–264 (2006).
[Crossref]

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. Atmos. 108, 4350 (2003).
[Crossref]

A. Fried, B. Wert, J. Walega, D. Richter, and B. Potter, “Airborne measurements of formaldehyde employing a high performance tunable diode laser absorption system,” Proc. SPIE 4817, 177–183 (2002).
[Crossref]

Walega, J. G.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, L. Rippe, and A. Fried, “Difference frequency generation spectrometer for simultaneous multispecies detection,” Opt. Express 18, 27670–27681 (2010).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15, 13476–13495 (2007).
[Crossref]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85, 207–218 (2006).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Wang, G.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

Wang, L.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

Wang, Q.

Wang, Y.

Wang, Z.

Warneke, C.

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

Washenfelder, R. A.

R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
[Crossref]

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

Wcislo, P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Weber, R. J.

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Wegener, R.

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

Wehr, R.

J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
[Crossref]

Weibring, P.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, L. Rippe, and A. Fried, “Difference frequency generation spectrometer for simultaneous multispecies detection,” Opt. Express 18, 27670–27681 (2010).
[Crossref]

P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15, 13476–13495 (2007).
[Crossref]

A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
[Crossref]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85, 207–218 (2006).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247–264 (2006).
[Crossref]

Weih, R.

Werle, P.

R. Mficke, B. Scheumann, J. Slemr, F. Slemr, and P. Werle, “Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: an intercomparison study,” Infrared Phys. Technol. 37, 29–32 (1996).
[Crossref]

Werle, P. W.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
[Crossref]

Wert, B.

A. Fried, B. Wert, J. Walega, D. Richter, and B. Potter, “Airborne measurements of formaldehyde employing a high performance tunable diode laser absorption system,” Proc. SPIE 4817, 177–183 (2002).
[Crossref]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[Crossref]

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[Crossref]

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Wert, B. P.

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. Atmos. 108, 4350 (2003).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
[Crossref]

Westberg, H.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Wilson, K. M.

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

Wilzewski, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Wisthaler, A.

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Wittrock, F.

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

Wolfe, G. M.

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
[Crossref]

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

Wood, E.

J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
[Crossref]

Wu, H.

Wu, T.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Xiao, L.

Xu, X.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

Yang, C.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

Yang, H.

Yang, R. Q.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[Crossref]

Yang, Z.

Z. Yang, Y. Guo, X. Ming, and L. Sun, “Generalized optical design of the double-row circular multi-pass cell,” Sensors 18, 2680 (2018).
[Crossref]

Yao, C.

Ye, W.

Yin, W.

Yin, X.

Yu, H.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

Yu, S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Yu, Y.

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23, 19821–19830 (2015).
[Crossref]

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

Zahniser, M. S.

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[Crossref]

J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
[Crossref]

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
[Crossref]

Zak, E. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Zarzana, K. J.

R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
[Crossref]

Zetzsch, C.

Zhang, G.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

Zhang, L.

Zhang, W.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Zhang, Y.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

Zhao, W.

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Zheng, C.

Zhou, X.

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

Anal. Chem. (2)

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480  nm,” Anal. Chem. 85, 2260–2268 (2013).
[Crossref]

C. Yang, W. Zhao, B. Fang, H. Yu, X. Xu, Y. Zhang, Y. Gai, W. Zhang, W. Chen, and C. Fittschen, “Improved chemical amplification instrument by using a Nafion dryer as an amplification reactor for quantifying atmospheric peroxy radicals under ambient conditions,” Anal. Chem. 91, 776–779 (2019).
[Crossref]

Anal. Methods (1)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6, 5483–5488 (2014).
[Crossref]

Appl. Opt. (11)

C. Yao, Z. Wang, Q. Wang, Y. Bian, C. Chen, L. Zhang, and W. Ren, “Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane,” Appl. Opt. 57, 8005–8010 (2018).
[Crossref]

S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493  nm,” Appl. Opt. 51 (25), 6009–6013 (2012).
[Crossref]

D. R. Herriott and H. J. Schulte, “Folded optical delay lines,”Appl. Opt. 4, 883–891 (1964).
[Crossref]

D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
[Crossref]

J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
[Crossref]

A. L. Vitushkin and L. F. Vitushkin, “Design of a multipass optical cell based on the use of shifted corner cubes and right-angle prisms,” Appl. Opt. 37, 162–165 (1998).
[Crossref]

J. Ofner, H. Kruger, and C. Zetzsch, “Circular multireflection cell for optical spectroscopy,” Appl. Opt. 49, 5001–5004 (2010).
[Crossref]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
[Crossref]

K. Chen, H. Yang, L. Sun, and G. Jin, “Generalized method for calculating astigmatism of the unit-magnification multipass system,” Appl. Opt. 49, 1964–1971 (2010).
[Crossref]

C. Robert, “Simple, stable, and compact multiple-reflection optical cell for very long optical paths,” Appl. Opt. 46, 5408–5418 (2007).
[Crossref]

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[Crossref]

Appl. Phys. B (13)

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247–264 (2006).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85, 207–218 (2006).
[Crossref]

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119, 119–131 (2015).
[Crossref]

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[Crossref]

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112, 461–465 (2013).
[Crossref]

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430 (2008).
[Crossref]

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75, 311–316 (2002).
[Crossref]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[Crossref]

P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit,” Appl. Phys. B 110, 309–314 (2013).
[Crossref]

Appl. Phys. Lett. (1)

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108, 011106 (2016).
[Crossref]

Atmos. Chem. Phys. (5)

A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I. Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOAS measurements of formaldehyde in the Po-Valley,” Atmos. Chem. Phys. 5, 909–918 (2005).
[Crossref]

J. P. DiGangi, S. B. Henry, A. Kammrath, E. S. Boyle, L. Kaser, R. Schnitzhofer, M. Graus, A. Turnipseed, J.-H. Park, R. J. Weber, R. S. Hornbrook, C. A. Cantrell, and R. L. Maudlin, S. Kim, Y. Nakashima, G. M. Wolfe, Y. Kajii, E. C. Apel, A. H. Goldstein, A. Guenther, T. Karl, A. Hansel, and F. N. Keutsch, “Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry,” Atmos. Chem. Phys. 12, 9529–9543 (2012).
[Crossref]

J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch, “Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation,” Atmos. Chem. Phys. 15, 7571–7583 (2015).
[Crossref]

C. Hak, I. Pundt, S. Trick, C. Kern, U. Platt, J. Dommen, C. Ordóñez, A. S. H. Prévôt, W. Junkermann, C. Astorga-Lloréns, B. R. Larsen, J. Mellqvist, A. Strandberg, Y. Yu, B. Galle, J. Kleffmann, J. C. Lörzer, G. O. Braathen, and R. Volkamer, “Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air,” Atmos. Chem. Phys. 5, 2881–2900 (2005).
[Crossref]

A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S. J. Solomon, R. Steinbrecher, R. Tillmann, and T. Brauers, “Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. 8, 2189–2200 (2008).
[Crossref]

Atmos. Environ. (2)

T. E. Kleindienst, P. B. Shepson, C. M. Nero, R. R. Arnts, S. B. Tejada, G. I. Mackay, L. K. Mayne, H. I. Schiff, J. A. Lind, G. L. Kok, A. L. Lazrus, P. K. Dasgupta, and S. Dong, “An intercomparison of formaldehyde measurement techniques at ambient concentration,” Atmos. Environ. 22, 1931–1939 (1988).
[Crossref]

D. Trapp and C. D. Serves, “Intercomparison of formaldehyde measurements in the tropical atmosphere,” Atmos. Environ. 29, 3239–3243 (1995).
[Crossref]

Atmos. Meas. Tech. (7)

J. Kaiser, X. Li, R. Tillmann, I. Acir, F. Holland, F. Rohrer, R. Wegener, and F. N. Keutsch, “Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements,” Atmos. Meas. Tech. 7, 1571–1580 (2014).
[Crossref]

C. Warneke, P. Veres, J. S. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, F. C. Fehsenfeld, M. Graus, J. B. Gilman, and J. A. de Gouw, “Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results,” Atmos. Meas. Tech. 4, 2345–2358 (2011).
[Crossref]

C. Vigouroux, C. A. Bauer Aquino, M. Bauwens, C. Becker, T. Blumenstock, M. De Mazière, O. García, M. Grutter, C. Guarin, J. Hannigan, F. Hase, N. Jones, R. Kivi, D. Koshelev, B. Langerock, E. Lutsch, M. Makarova, J.-M. Metzger, J.-F. Müller, J. Notholt, I. Ortega, M. Palm, C. Paton-Walsh, A. Poberovskii, M. Rettinger, J. Robinson, D. Smale, T. Stavrakou, W. Stremme, K. Strong, R. Sussmann, Y. Té, and G. Toon, “NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances,” Atmos. Meas. Tech. 11, 5049–5073 (2018).
[Crossref]

B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu, “Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations,” Atmos. Meas. Tech. 8, 1733–1756 (2015).
[Crossref]

M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8, 541–552 (2015).
[Crossref]

J. M. St. Clair, A. K. Swanson, S. A. Bailey, G. M. Wolfe, J. E. Marrero, L. T. Iraci, J. G. Hagopian, and T. F. Hanisco, “A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde,” Atmos. Meas. Tech. 10, 4833–4844 (2017).
[Crossref]

R. A. Washenfelder, A. R. Attwood, J. M. Flores, K. J. Zarzana, Y. Rudich, and S. S. Brown, “Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde,” Atmos. Meas. Tech. 9, 41–52 (2016).
[Crossref]

Chin. J. Chem. Phys. (1)

M. Dong, W. Zhao, M. Huang, W. Chen, C. Hu, X. Gu, S. Pei, W. Huang, and W. Zhang, “Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment,” Chin. J. Chem. Phys. 26, 133–139 (2013).
[Crossref]

Environ. Sci. Technol. (2)

J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43, 790–795 (2009).
[Crossref]

R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, and D. Romanini, “Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels,” Environ. Sci. Technol. 46, 10704–10710 (2012).
[Crossref]

Faraday Discuss. (1)

F. D. Pope, C. A. Smith, P. R. Davis, D. E. Shallcross, M. N. R. Ashfold, and A. J. Orr-Ewing, “Photochemistry of formaldehyde under tropospheric conditions,” Faraday Discuss. 130, 59–72 (2005).
[Crossref]

Geophy. Res. Lett. (1)

S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophy. Res. Lett. 27, 2093–2096 (2000).
[Crossref]

Geophys. Res. Lett. (1)

R. V. Martin, A. M. Fiore, and A. Van Donkelaar, “Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions,” Geophys. Res. Lett. 31, L06120 (2004).
[Crossref]

Infrared Phys. Technol. (3)

R. Mficke, B. Scheumann, J. Slemr, F. Slemr, and P. Werle, “Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: an intercomparison study,” Infrared Phys. Technol. 37, 29–32 (1996).
[Crossref]

K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, and M. Konno, “Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell,” Infrared Phys. Technol. 79, 1–5 (2016).
[Crossref]

M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol. 41, 259–269 (2000).
[Crossref]

J. Atmos. Chem. (2)

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[Crossref]

L. M. Cárdenas, D. J. Brassington, B. J. Allan, H. Coe, B. Alicke, U. Platt, K. M. Wilson, J. M. C. Plane, and S. A. Penkett, “Intercomparison of formaldehyde measurements in clean and polluted atmospheres,” J. Atmos. Chem. 37, 53–80 (2000).
[Crossref]

J. Environ. Sci. (1)

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daele, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” J. Environ. Sci. 24, 22–33 (2012).
[Crossref]

J. Geophys. Res. Atmos. (9)

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at whiteface mountain using a dual tunable diode laser system,” J. Geophys. Res. Atmos. 109, D16S08 (2004).
[Crossref]

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. Atmos. 108, 4350 (2003).
[Crossref]

S. C. Herndon, M. S. Zahniser, and D. D. Nelson Jr., J. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England air quality study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. Atmos. 112, D10S03 (2007).
[Crossref]

R. Meller and G. K. Moortgat, “Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323  K in the wavelength range 225-375  nm,” J. Geophys. Res. Atmos. 105(D6), 7089–7101 (2000).
[Crossref]

V. Wagner, R. von Glasow, H. Fischer, and P. J. Crutzen, “Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: a model study,” J. Geophys. Res. Atmos. 107, ACH 3-1–ACH 3-14 (2002).
[Crossref]

X. Jin, A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. Duncan, K. F. Boersma, I. D. Smedt, G. G. Abad, K. Chance, and G. S. Tonnesen, “Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends,” J. Geophys. Res. Atmos. 122, 10439–10461 (2017).
[Crossref]

B. Heikes, B. McCully, X. Zhou, Y. N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas, “Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2,” J. Geophys. Res. Atmos. 101, 14741–14755 (1996).
[Crossref]

T. Gilpin, E. Apel, A. Fried, B. Wert, J. Calvert, G. Zhang, P. Dasgupta, J. W. Harder, B. Heikes, B. Hopkins, H. Westberg, T. Kleindienst, Y.-N. Lee, X. Zhou, W. Lonneman, and S. Sewell, “Intercomparison of six ambient [CH2O] measurement techniques,” J. Geophys. Res. Atmos. 102, 21161–21188 (1997).
[Crossref]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, and J. R. Drummond, “Tunable diode laser absorption for ground-based measurements of formaldehyde,” J. Geophys. Res. Atmos. 102, 6253–6266 (1997).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Opt. Eng. (1)

J. Barry McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 1111–1124 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409–5415 (1999).
[Crossref]

Proc. SPIE (2)

A. Fried, P. Weibring, D. Richter, J. Walega, C. Roller, and F. Tittel, “Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents,” Proc. SPIE 6378, 63780F (2006).
[Crossref]

A. Fried, B. Wert, J. Walega, D. Richter, and B. Potter, “Airborne measurements of formaldehyde employing a high performance tunable diode laser absorption system,” Proc. SPIE 4817, 177–183 (2002).
[Crossref]

Sens. Actuators B (2)

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators B 221, 1062–1068 (2015).
[Crossref]

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B 220, 1000–1005 (2015).
[Crossref]

Sensors (1)

Z. Yang, Y. Guo, X. Ming, and L. Sun, “Generalized optical design of the double-row circular multi-pass cell,” Sensors 18, 2680 (2018).
[Crossref]

Spectrochim. Acta A (2)

R. Kormann, H. Fischer, C. Gurk, F. Helleis, Th. Klüpfel, K. Kowalski, R. Königstedt, U. Parchatka, and V. Wagner, “Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels,” Spectrochim. Acta A 58, 2489–2498 (2002).
[Crossref]

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004).
[Crossref]

Other (5)

S. So and D. Thomazy, “Novel spherical mirror multipass cells with improved spot pattern density for gas sensing,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), paper CW3B.6.

S. So and D. Thomazy, “Multipass cell using spherical mirrors while achieving dense spot patterns,” U.S. patentUS20120242989A1 (27September2012).

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics (Springer, 2003), Vol. 89, pp. 445–516.

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy-Principles and Applications (Springer-Verlag, 2008).

D. E. Heard, ed., Analytical Techniques for Atmospheric Measurement (Blackwell, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Upper panel: Schematic of the ICL-based HCHO spectrometer. M, reflective mirror; PC, personal computer; DAQ, data acquisition. Lower panel: Photograph of the spectrometer.
Fig. 2.
Fig. 2. Simulated and actual light spot pattern in the spherical mirror multipass cell with different number ($N$) back and forth reflection. The distance ($d$) between the two spherical mirrors was adjusted to satisfy different light patterns. The absorption pathlength ($L$) can be calculated by $L = N \times d$.
Fig. 3.
Fig. 3. (a) Direct absorption and (b) WMS ${2}f$ spectra for some selected HCHO mixing ratios at low pressure (50 mbar) and at room temperature. (c) Linear relationship between the peak-to-peak amplitudes of the measured ${2}f$ signals and HCHO concentrations calculated by DAS.
Fig. 4.
Fig. 4. Typical measured (black) and fit (red) spectra measured with the ICL HCHO spectrometer. The fit residual is shown in the lower panel. The spectra were measured with a 10 s acquisition time with 100 Hz scan rate and 1000-sweep average.
Fig. 5.
Fig. 5. Performance evaluation of the HCHO spectrometer. Upper panel: time series measurement of the stable HCHO concentration diluted by the mixture of zero air with standard gas. Middle panel: the corresponding Allan deviation plot. Lower panel: frequency distribution of HCHO continuous measurement (short-term stability or instrument precision).
Fig. 6.
Fig. 6. Time series of HCHO measured with the new ICL multipass spectrometer. Related ${{\rm O}_3}$ concentration measured with an ${{\rm O}_3}$ analyzer is also shown in the figure.

Tables (2)

Tables Icon

Table 1. Comparison of the Literature Reported for Detection Precisions with Different Methods

Tables Icon

Table 2. Comparison of the HCHO Detection Precision of Some TDLAS Systems

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ A B C D ] = [ 1 0 2 arcsin ( x n 1 / r ) / x n 1 1 ] [ 1 d n ( sin ( x n 1 ) / x n 1 ) 0 1 ] ,
x n = x n 1 + d n sin ( x n 1 ) , x n = 2 arcsin ( x n / r ) + x n 1 , y n = y n 1 + d n sin ( y n 1 ) , y n = 2 arcsin ( y n / r ) + y n 1 .
S s a m p l e ( x ) = A × S r e f e r e n c e ( x ) + P ( x ) ,
χ 2 = i = 1 N [ S s a m p l e , i ( A × S r e f e r e n c e , i + P i ) ] 2 .
α = 1 L ln ( I I 0 ) 1 L ( I 0 I ) I 0 1 L Δ I I 0 ,

Metrics