Abstract

We first investigate the field intensity in the nanoantenna gap as a function of common antenna properties including polarization, input resistance, and gain. This function provides us a method on how to effectively enhance the field intensity. In the case of polarization matched to the incident wave, the nanoantenna should have both large input resistance and high gain in the arrival direction. To meet these demands, the flat feed gap is modified to a bowtie form, and a hemispherical lens is attached to the nanoantenna. Consequently, the relative field intensity in the gap is found to be 2.6×103a.u., which is about 8 times larger than the original value, and they all agree well with the simulations. This research is expected to be used as guidelines for the design of nanoantennas and to promote them in plasmonic applications such as spectroscopy and photodetection.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineering the optical response of plasmonic nanoantennas

Holger Fischer and Olivier J. F. Martin
Opt. Express 16(12) 9144-9154 (2008)

Optimized tapered dipole nanoantenna as efficient energy harvester

Youssef M. El-Toukhy, Mohamed Hussein, Mohamed Farhat O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya
Opt. Express 24(14) A1107-A1122 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription