Abstract

Division of focal plane (DoFP) polarization imaging sensors have the distinct advantage of acquiring temporally synchronized Stokes vector in one scene. The sensors’ spatially modulated arrangement of a micropolarization array results in loss of spatial resolution and instantaneous field-of-overview errors. Polarization demosaicking (PDM) methods are often utilized to address these drawbacks and achieve the goal of recovering missing polarization information. In this paper, we propose minimized Laplacian polarization residual interpolation for PDM. The Laplacian energy is introduced to improve the interpolation accuracy. We employ interchannel correlation and a guided filter to generate precise tentative estimates and the interpolation performed in the residual domain, where the residuals are the differences between observed values and tentative estimates. Experiments demonstrate that the proposed algorithm provides superior performance in terms of mean average error and peak signal-to-noise ratio.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demosaicking DoFP images using Newton’s polynomial interpolation and polarization difference model

Ning Li, Yongqiang Zhao, Quan Pan, and Seong G. Kong
Opt. Express 27(2) 1376-1391 (2019)

Residual interpolation for division of focal plane polarization image sensors

Ashfaq Ahmed, Xiaojin Zhao, Viktor Gruev, Junchao Zhang, and Amine Bermak
Opt. Express 25(9) 10651-10662 (2017)

Image interpolation for division of focal plane polarimeters with intensity correlation

Junchao Zhang, Haibo Luo, Bin Hui, and Zheng Chang
Opt. Express 24(18) 20799-20807 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription