Abstract

Infrared imaging spectrometers are frequently used for detecting chemicals at standoff distances. Cost, size, and sensitivity are common tradeoffs in this regime, particularly when deploying infrared imaging arrays. In this work, we develop and characterize an infrared snapshot computational imaging spectrometer that leverages a multi-aperture filtered design. A theoretical model is developed, describing the multiplexed encoding technique. The experimental system is then described, including filter optimization and fabrication. Finally, the performance of the system is tested, leveraging a neural-network-based calibration approach, for various indoor and outdoor detection scenarios involving liquid contaminants. The results of our testing demonstrate that the system can detect room-temperature liquid contaminants under cold sky downwelling radiance conditions. We achieve a false positive rate (FPR) of 0.12% at a true positive rate (TPR) of 95% for silicon oil on sand at 18°C and a FPR of 2% at a TPR of 95% for silicon oil on various substrates at 23°C. Results support the efficacy of using uncooled polymer absorption filters for infrared imaging liquid contaminant detectors.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal luminescence spectroscopy chemical imaging sensor

Arthur H. Carrieri, Tudor N. Buican, Erik S. Roese, James Sutter, and Alan C. Samuels
Appl. Opt. 51(28) 6765-6780 (2012)

Longwave infrared (LWIR) coded aperture dispersive spectrometer

C. Fernandez, B. D. Guenther, M. E. Gehm, D. J. Brady, and M. E. Sullivan
Opt. Express 15(9) 5742-5753 (2007)

Color image identification and reconstruction using artificial neural networks on multimode fiber images: towards an all-optical design

Nadav Shabairou, Eyal Cohen, Omer Wagner, Dror Malka, and Zeev Zalevsky
Opt. Lett. 43(22) 5603-5606 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (23)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription