Abstract

We demonstrate a broadband As2S3-based fiber coupler operating up to the 5.4 μm wavelength range developed by using a fused biconical tapering technique. During the manufacturing process, real-time data monitoring of the coupling ratio was at 2.64 μm. The measurement of minimal excess loss was at less than 1 dB in the range of 5–5.4 μm. Also, fiber bend loss was numerically analyzed to determine optimal coupler geometric parameters.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra broadband mid-IR supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide graded-index photonic crystal fiber: design and analysis

A. G. N. Chaitanya, Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 55(36) 10138-10145 (2016)

Broadband high-power mid-IR supercontinuum generation in tapered chalcogenide step-index optical fiber

Than Singh Saini, Hoa Phuoc Trung Nguyen, Xing Luo, Tong Hoang Tuan, Takenobu Suzuki, and Yasutake Ohishi
OSA Continuum 2(5) 1652-1666 (2019)

Modeling of a mid-IR chalcogenide fiber Raman laser

P. A. Thielen, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal
Opt. Express 11(24) 3248-3253 (2003)

References

  • View by:
  • |
  • |
  • |

  1. E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
    [Crossref]
  2. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [Crossref]
  3. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref]
  4. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
    [Crossref]
  5. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
    [Crossref]
  6. M. A. Ettabib, L. Xu, A. Bogris, A. Kapsalis, M. Belal, E. Lorent, P. Labeye, S. Nicoletti, K. Hammani, and D. Syvridis, “Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide,” Opt. Lett. 40, 4118–4121 (2015).
    [Crossref]
  7. D. Jayasuriya, “Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging,” Ph.D. thesis (University of Nottingham, 2018).
  8. M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
    [Crossref]
  9. Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124 (2013).
    [Crossref]
  10. H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Ultrafast laser-inscribed mid-infrared evanescent field directional couplers in GeAsSe chalcogenide glass,” OSA Continuum 1, 221–228 (2018).
    [Crossref]
  11. R. R. Gattass, R. Thapa, F. H. Kung, L. E. Busse, L. B. Shaw, and J. S. Sanghera, “Review of infrared fiber-based components,” Appl. Opt. 54, F25–F34 (2015).
    [Crossref]
  12. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17, 12627–12640 (2009).
    [Crossref]
  13. I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic, 2013).
  14. M. C. Gonçalves, “Heavy metal fluoride glasses,” in Overall Aspects of Non-Traditional Glasses: Synthesis, Properties and Applications (2016), p. 67.
  15. D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
    [Crossref]
  16. L. N. Butvina, E. M. Dianov, N. Lichkova, V. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50  dB/km in broad IR region and their applications,” Adv. Fiber Opt. 4083, 238–254 (2000).
    [Crossref]
  17. M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
    [Crossref]
  18. A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
    [Crossref]
  19. J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6–16 (1999).
    [Crossref]
  20. S. Cui, C. Boussard-Plédel, J. Troles, and B. Bureau, “Telluride glass single mode fiber for mid and far infrared filtering,” Opt. Mater. Express 6, 971–978 (2016).
    [Crossref]
  21. I. Tugendhaft, A. Bornstein, Y. Weissman, and A. A. Hardy, “Directional multimode fiber couplers in the mid-infrared,” Opt. Eng. 34, 2846–2850 (1995).
    [Crossref]
  22. G. S. Athanasiou, E. Bereś-Pawlik, G. Semczuk, D. Furniss, A. B. Seddon, and T. M. Benson, “Large core, multimode, chalcogenide glass fibre coupler by side-polishing,” Opt. Quantum Electron. 45, 961–967 (2013).
    [Crossref]
  23. M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
    [Crossref]
  24. G. Stevens and T. Woodbridge, “Mid-IR fused fiber couplers,” Proc. SPIE 9730, 973007 (2016).
    [Crossref]
  25. F. Tavakoli, A. Rekik, and M. Rochette, “Broadband and wavelength-dependent chalcogenide optical fiber couplers,” IEEE Photon. Technol. Lett. 29, 735–738 (2017).
    [Crossref]
  26. V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm,” Opt. Lett. 44, 491–494 (2019).
    [Crossref]
  27. S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
    [Crossref]
  28. B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
    [Crossref]
  29. W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. 48, 633–636 (1958).
    [Crossref]
  30. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
    [Crossref]

2019 (1)

2018 (4)

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Ultrafast laser-inscribed mid-infrared evanescent field directional couplers in GeAsSe chalcogenide glass,” OSA Continuum 1, 221–228 (2018).
[Crossref]

2017 (2)

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

F. Tavakoli, A. Rekik, and M. Rochette, “Broadband and wavelength-dependent chalcogenide optical fiber couplers,” IEEE Photon. Technol. Lett. 29, 735–738 (2017).
[Crossref]

2016 (2)

2015 (4)

R. R. Gattass, R. Thapa, F. H. Kung, L. E. Busse, L. B. Shaw, and J. S. Sanghera, “Review of infrared fiber-based components,” Appl. Opt. 54, F25–F34 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

M. A. Ettabib, L. Xu, A. Bogris, A. Kapsalis, M. Belal, E. Lorent, P. Labeye, S. Nicoletti, K. Hammani, and D. Syvridis, “Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide,” Opt. Lett. 40, 4118–4121 (2015).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

2013 (3)

2012 (1)

2011 (1)

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

2009 (1)

2007 (1)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

2003 (1)

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

2000 (1)

L. N. Butvina, E. M. Dianov, N. Lichkova, V. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50  dB/km in broad IR region and their applications,” Adv. Fiber Opt. 4083, 238–254 (2000).
[Crossref]

1999 (1)

J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6–16 (1999).
[Crossref]

1998 (1)

M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
[Crossref]

1995 (1)

I. Tugendhaft, A. Bornstein, Y. Weissman, and A. A. Hardy, “Directional multimode fiber couplers in the mid-infrared,” Opt. Eng. 34, 2846–2850 (1995).
[Crossref]

1984 (1)

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
[Crossref]

1958 (1)

Aggarwal, I.

J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6–16 (1999).
[Crossref]

Aggarwal, I. D.

I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic, 2013).

Agger, C.

Athanasiou, G. S.

G. S. Athanasiou, E. Bereś-Pawlik, G. Semczuk, D. Furniss, A. B. Seddon, and T. M. Benson, “Large core, multimode, chalcogenide glass fibre coupler by side-polishing,” Opt. Quantum Electron. 45, 961–967 (2013).
[Crossref]

Baets, R.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Baillieul, M.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Baldeschwieler, J. D.

M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
[Crossref]

Bang, O.

Baudet, E.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Beauchamp, J. L.

M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
[Crossref]

Belal, M.

Benderov, O.

B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
[Crossref]

Bendow, B.

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
[Crossref]

Benson, T. M.

G. S. Athanasiou, E. Bereś-Pawlik, G. Semczuk, D. Furniss, A. B. Seddon, and T. M. Benson, “Large core, multimode, chalcogenide glass fibre coupler by side-polishing,” Opt. Quantum Electron. 45, 961–967 (2013).
[Crossref]

Beres-Pawlik, E.

G. S. Athanasiou, E. Bereś-Pawlik, G. Semczuk, D. Furniss, A. B. Seddon, and T. M. Benson, “Large core, multimode, chalcogenide glass fibre coupler by side-polishing,” Opt. Quantum Electron. 45, 961–967 (2013).
[Crossref]

Bernier, M.

Bodiou, L.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Bogris, A.

Bornstein, A.

I. Tugendhaft, A. Bornstein, Y. Weissman, and A. A. Hardy, “Directional multimode fiber couplers in the mid-infrared,” Opt. Eng. 34, 2846–2850 (1995).
[Crossref]

Boussard-Plédel, C.

Bucio, T. D.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Bureau, B.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

S. Cui, C. Boussard-Plédel, J. Troles, and B. Bureau, “Telluride glass single mode fiber for mid and far infrared filtering,” Opt. Mater. Express 6, 971–978 (2016).
[Crossref]

Busse, L. E.

Butcher, H. L.

Butvina, L. N.

L. N. Butvina, E. M. Dianov, N. Lichkova, V. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50  dB/km in broad IR region and their applications,” Adv. Fiber Opt. 4083, 238–254 (2000).
[Crossref]

Charrier, J.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Choi, D.-Y.

Churbanov, M.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

Coen, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Cui, S.

Debbarma, S.

Dergachev, A.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Dianov, E.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

Dianov, E. M.

L. N. Butvina, E. M. Dianov, N. Lichkova, V. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50  dB/km in broad IR region and their applications,” Adv. Fiber Opt. 4083, 238–254 (2000).
[Crossref]

Dupont, S.

Elliott, S.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Ettabib, M. A.

Farries, M.

Fedorov, V. V.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Fortin, V.

Freeman, M. J.

Furniss, D.

G. S. Athanasiou, E. Bereś-Pawlik, G. Semczuk, D. Furniss, A. B. Seddon, and T. M. Benson, “Large core, multimode, chalcogenide glass fibre coupler by side-polishing,” Opt. Quantum Electron. 45, 961–967 (2013).
[Crossref]

Gai, X.

Gao, W.

Gapontsev, V.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Gardes, F. Y.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Gattass, R. R.

Gonçalves, M. C.

M. C. Gonçalves, “Heavy metal fluoride glasses,” in Overall Aspects of Non-Traditional Glasses: Synthesis, Properties and Applications (2016), p. 67.

Gutierrez-Arroyo, A.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Hammani, K.

Hänsch, T. W.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Hardy, A. A.

I. Tugendhaft, A. Bornstein, Y. Weissman, and A. A. Hardy, “Directional multimode fiber couplers in the mid-infrared,” Opt. Eng. 34, 2846–2850 (1995).
[Crossref]

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Islam, M. N.

Jayasuriya, D.

D. Jayasuriya, “Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging,” Ph.D. thesis (University of Nottingham, 2018).

Jobin, F.

Kapsalis, A.

Ke, K.

Keiding, S. R.

Khokhar, A. Z.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

King, T. A.

Kongovi, R.

M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
[Crossref]

Kossakovski, D. A.

M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
[Crossref]

Kuepper, L.

L. N. Butvina, E. M. Dianov, N. Lichkova, V. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50  dB/km in broad IR region and their applications,” Adv. Fiber Opt. 4083, 238–254 (2000).
[Crossref]

Kung, F. H.

Kuyken, B.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Labeye, P.

Larose, M.

Lee, D.

Lemaitre, J.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Leo, F.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Lichkova, N.

L. N. Butvina, E. M. Dianov, N. Lichkova, V. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50  dB/km in broad IR region and their applications,” Adv. Fiber Opt. 4083, 238–254 (2000).
[Crossref]

Littlejohns, C. G.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Lloyd, G. R.

Lorent, E.

Lu, G.

I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic, 2013).

Luther-Davies, B.

Ma, P.

MacLachlan, D. G.

Madden, S.

Malitson, I. H.

Martyshkin, D.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Mashanovich, G. Z.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Michel, K.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Mirov, M.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Mirov, S. B.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Mitchell, C. J.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Moskalev, I. S.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Nallala, J.

Napier, B.

Nedeljkovic, M.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Nemec, P.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Nicoletti, S.

Palanker, D. V.

M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
[Crossref]

Penadés, J. S.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Peppers, J.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Petersen, C.

Petersen, C. R.

Plotnichenko, V.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

Prtljaga, N.

Qiu, C.

Rekik, A.

F. Tavakoli, A. Rekik, and M. Rochette, “Broadband and wavelength-dependent chalcogenide optical fiber couplers,” IEEE Photon. Technol. Lett. 29, 735–738 (2017).
[Crossref]

Rinnert, E.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Rochette, M.

F. Tavakoli, A. Rekik, and M. Rochette, “Broadband and wavelength-dependent chalcogenide optical fiber couplers,” IEEE Photon. Technol. Lett. 29, 735–738 (2017).
[Crossref]

Rodney, W. S.

Sanghera, J.

J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6–16 (1999).
[Crossref]

Sanghera, J. S.

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Seddon, A. B.

G. S. Athanasiou, E. Bereś-Pawlik, G. Semczuk, D. Furniss, A. B. Seddon, and T. M. Benson, “Large core, multimode, chalcogenide glass fibre coupler by side-polishing,” Opt. Quantum Electron. 45, 961–967 (2013).
[Crossref]

Semczuk, G.

G. S. Athanasiou, E. Bereś-Pawlik, G. Semczuk, D. Furniss, A. B. Seddon, and T. M. Benson, “Large core, multimode, chalcogenide glass fibre coupler by side-polishing,” Opt. Quantum Electron. 45, 961–967 (2013).
[Crossref]

Shaw, L. B.

Shiryaev, V.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

Shu, J.

Sigel, G.

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
[Crossref]

Skripachev, I.

B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
[Crossref]

Smolski, V.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Snopatin, G.

B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
[Crossref]

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

Spiridonov, M.

B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
[Crossref]

Stankovic, S.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Stepanov, B.

B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
[Crossref]

Stevens, G.

G. Stevens and T. Woodbridge, “Mid-IR fused fiber couplers,” Proc. SPIE 9730, 973007 (2016).
[Crossref]

Stone, N.

Syvridis, D.

Tavakoli, F.

F. Tavakoli, A. Rekik, and M. Rochette, “Broadband and wavelength-dependent chalcogenide optical fiber couplers,” IEEE Photon. Technol. Lett. 29, 735–738 (2017).
[Crossref]

Tebeneva, T.

B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
[Crossref]

Thapa, R.

Thøgersen, J.

Thomson, R. R.

Tran, D.

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
[Crossref]

Troles, J.

Tugendhaft, I.

I. Tugendhaft, A. Bornstein, Y. Weissman, and A. A. Hardy, “Directional multimode fiber couplers in the mid-infrared,” Opt. Eng. 34, 2846–2850 (1995).
[Crossref]

Unger, M. A.

M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
[Crossref]

Vallée, R.

Van Campenhout, J.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Vasilyev, S.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Ward, J.

Weidmann, D.

Weissman, Y.

I. Tugendhaft, A. Bornstein, Y. Weissman, and A. A. Hardy, “Directional multimode fiber couplers in the mid-infrared,” Opt. Eng. 34, 2846–2850 (1995).
[Crossref]

Welsh, M. J.

Woodbridge, T.

G. Stevens and T. Woodbridge, “Mid-IR fused fiber couplers,” Proc. SPIE 9730, 973007 (2016).
[Crossref]

Xia, C.

Xia, Y.

Xu, L.

Xu, Q.

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Yang, Z.

Yu, Y.

Zakery, A.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Zavgorodnev, V.

L. N. Butvina, E. M. Dianov, N. Lichkova, V. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50  dB/km in broad IR region and their applications,” Adv. Fiber Opt. 4083, 238–254 (2000).
[Crossref]

Zhang, X.

Adv. Device Mater. (1)

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Adv. Fiber Opt. (1)

L. N. Butvina, E. M. Dianov, N. Lichkova, V. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50  dB/km in broad IR region and their applications,” Adv. Fiber Opt. 4083, 238–254 (2000).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

F. Tavakoli, A. Rekik, and M. Rochette, “Broadband and wavelength-dependent chalcogenide optical fiber couplers,” IEEE Photon. Technol. Lett. 29, 735–738 (2017).
[Crossref]

J. Lightwave Technol. (1)

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
[Crossref]

J. Non-Cryst. Solids (4)

B. Stepanov, O. Benderov, T. Tebeneva, G. Snopatin, M. Spiridonov, and I. Skripachev, “Chalcogenide optical fiber couplers made by FBT method,” J. Non-Cryst. Solids 480, 23–27 (2018).
[Crossref]

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6–16 (1999).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (1)

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, and R. Baets, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Opt. Eng. (1)

I. Tugendhaft, A. Bornstein, Y. Weissman, and A. A. Hardy, “Directional multimode fiber couplers in the mid-infrared,” Opt. Eng. 34, 2846–2850 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

G. S. Athanasiou, E. Bereś-Pawlik, G. Semczuk, D. Furniss, A. B. Seddon, and T. M. Benson, “Large core, multimode, chalcogenide glass fibre coupler by side-polishing,” Opt. Quantum Electron. 45, 961–967 (2013).
[Crossref]

OSA Continuum (1)

Proc. SPIE (1)

G. Stevens and T. Woodbridge, “Mid-IR fused fiber couplers,” Proc. SPIE 9730, 973007 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

M. A. Unger, D. A. Kossakovski, R. Kongovi, J. L. Beauchamp, J. D. Baldeschwieler, and D. V. Palanker, “Etched chalcogenide fibers for near-field infrared scanning microscopy,” Rev. Sci. Instrum. 69, 2988–2993 (1998).
[Crossref]

Other (3)

D. Jayasuriya, “Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging,” Ph.D. thesis (University of Nottingham, 2018).

I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic, 2013).

M. C. Gonçalves, “Heavy metal fluoride glasses,” in Overall Aspects of Non-Traditional Glasses: Synthesis, Properties and Applications (2016), p. 67.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Dependence of the effective refractive index on the waist coefficient of the fundamental mode of chalcogenide fiber.
Fig. 2.
Fig. 2. (a) Bending loss of chalcogenide fibers. (b) Bending loss for the helix structure of chalcogenide fibers, depending on the waist coefficient w and helix pitch z0.
Fig. 3.
Fig. 3. Experimental setup for (a) in situ coupling ratio measurement. (b) Broadband coupler characterization. LD, laser diode; IL, input lens; TS, translation stage; OL, output lens; PD, photodiode; SM, spherical mirror.
Fig. 4.
Fig. 4. (a) Coupling ratio over time on 2.64 μm. (b) Broadband coupling ratio measurements in the 2–2.7 μm wavelength range. (c) Broadband coupling ratio measurements in the 3.3–5.4 μm wavelength range.
Fig. 5.
Fig. 5. Broadband excess loss measurements (a) in the 2–2.7 μm wavelength range and (b) in the 3.4–5.5 μm wavelength range.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α(Reff)=πκ2exp[2γ3Reff3βz2]4Reffγ3/2V2BesselK[1,γa]BesselK[1,γa].
CRport1port3=Pport3Pport3+Pport4.

Metrics