Abstract

A sensing device composed of an eccentric core photonic quasi-crystal fiber based on surface plasmon resonance is designed using indium tin oxide (ITO) as the sensitive materials. The ITO film is deposited on the outside surface of the fiber to excite plasmonic interactions and facilitate refractive index (RI) detection. This eccentric core structure makes the evanescent field coupled effectively with analyte to achieve higher sensitivity. The influence of RI and structural parameters of different analytes on sensor performance was calculated by the finite-element method. In the analyte RI range between 1.33 and 1.39, the wavelength sensitivity reaches 21,100 nm/RIU, and the average sensitivity of 8750 nm/RIU is achieved at a resolution of 4.739×106RIU. The sensor has large potential in the detection of unknown RI analytes in the near-infrared region.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance

Chenguang Li, Bei Yan, and Jianjun Liu
J. Opt. Soc. Am. A 36(10) 1663-1668 (2019)

Surface plasmon resonance biosensor based on hexagonal lattice dual-core photonic crystal fiber

Tanvir Ahmed, Alok Kumar Paul, Md. Shamim Anower, and S. M. Abdur Razzak
Appl. Opt. 58(31) 8416-8422 (2019)

Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription