Abstract

This paper investigated how a polarization state influences frequency noise measurement accuracy of the short-delayed self-homodyne interference method. An autopolarization control method was demonstrated to mitigate polarization-induced fading (PIF) in a 120-deg phase difference Mach–Zehnder Interferometer (MZI). This method used a feedback adjustment with simulated annealing algorithm, which had the advantages of a short control period, high accuracy, and easy implementation. Frequency fluctuations’ power spectral density and linewidth results measured by the improved MZI were consistent with the results of the Michelson interferometer, which used the Faraday rotator mirrors (FRMs) to overcome PIF. The novel MZI structure is unrestricted to FRMs and can extend the capability of the short-delayed self-homodyne interference technique for many special bands’ laser frequency noise measurements such as visible bands.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser frequency noise characterization by self-heterodyne with both long and short delay

Weichao Ma, Bing Xiong, Changzheng Sun, Xu Ke, Zhibiao Hao, Lai Wang, Jian Wang, Yanjun Han, Hongtao Li, and Yi Luo
Appl. Opt. 58(13) 3555-3563 (2019)

Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler

Dan Xu, Fei Yang, Dijun Chen, Fang Wei, Haiwen Cai, Zujie Fang, and Ronghui Qu
Opt. Express 23(17) 22386-22393 (2015)

Dynamic frequency-noise spectrum measurement for a frequency-swept DFB laser with short-delayed self-heterodyne method

Qian Zhou, Jie Qin, Weilin Xie, Zhangweiyi Liu, Yitian Tong, Yi Dong, and Weisheng Hu
Opt. Express 23(22) 29245-29257 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription