Abstract

Liquid-filled tunable-focus lenses have been demonstrated to be suitable for autofocus eyewear applications. Traditionally, these lenses are constructed using an elastomeric polymer chamber filled with a high-index liquid. In this work, we investigate the effect of elastomeric creep on the deformation and eventual degradation of these tunable lenses. We use numerical analysis of a deformable circular disk representative of the lens and provide rigorous experimental results testing the creep property of a number of elastomers. Finally, we provide a comparative study of different elastomeric materials and select the best one for this application.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Explicit computational model of dielectric elastomeric lenses

Yanjie Cao, Yanan Wang, Yang Liu, and Yu-Xin Xie
Opt. Express 25(23) 28710-28717 (2017)

Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses

Seung Tae Choi, Byeong Soo Son, Gye Won Seo, Si-Young Park, and Kyung-Sick Lee
Opt. Express 22(5) 6133-6146 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).
  2. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  3. Varioptic, http://www.varioptic.com .
  4. Optotune, http://www.optotune.com .
  5. H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
    [Crossref]
  6. L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
    [Crossref]
  7. Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
    [Crossref]
  8. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
    [Crossref]
  9. C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
    [Crossref]
  10. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
    [Crossref]
  11. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [Crossref]
  12. S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21, 8669–8676 (2013).
    [Crossref]
  13. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [Crossref]
  14. N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
    [Crossref]
  15. N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017).
    [Crossref]
  16. N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.
  17. J. Jarosz, N. Molliex, G. Chenon, and B. Berge, “Adaptive eyeglasses for presbyopia correction: an original variable-focus technology,” Opt. Express 27, 10533–10552 (2019).
    [Crossref]
  18. C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
    [Crossref]
  19. W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).
  20. M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).
  21. S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).
  22. D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).
  23. S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
    [Crossref]
  24. C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990).
    [Crossref]
  25. L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
    [Crossref]
  26. S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
    [Crossref]
  27. T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
    [Crossref]
  28. K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962).
    [Crossref]
  29. K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
    [Crossref]
  30. M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948).
    [Crossref]
  31. M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
    [Crossref]
  32. A. Mikš and F. Šmejkal, “Dependence of the imaging properties of the liquid lens with variable focal length on membrane thickness,” Appl. Opt. 57, 6439–6445 (2018).
    [Crossref]
  33. P. Pokorný, F. Šmejkal, P. Kulmon, P. Novák, J. Novák, A. Mikš, M. Horák, and M. Jirásek, “Calculation of nonlinearly deformed membrane shape of liquid lens caused by uniform pressure,” Appl. Opt. 56, 5939–5947 (2017).
    [Crossref]
  34. L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
    [Crossref]
  35. W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
    [Crossref]
  36. P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
    [Crossref]

2019 (1)

2018 (3)

A. Mikš and F. Šmejkal, “Dependence of the imaging properties of the liquid lens with variable focal length on membrane thickness,” Appl. Opt. 57, 6439–6445 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

2017 (3)

2016 (1)

2015 (2)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

2014 (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

2013 (2)

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21, 8669–8676 (2013).
[Crossref]

2011 (2)

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

2008 (1)

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

2007 (2)

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[Crossref]

2006 (3)

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[Crossref]

L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
[Crossref]

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
[Crossref]

2004 (1)

2002 (1)

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

1998 (1)

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

1990 (1)

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990).
[Crossref]

1962 (1)

K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962).
[Crossref]

1948 (1)

M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948).
[Crossref]

Anderson, P. A.

Banerjee, A.

Berdichevsky, Y.

Berge, B.

Buckley, J. G.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

Busfield, J. J. C.

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

Callina, T.

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
[Crossref]

Carpi, F.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Chau, F. S.

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Chen, Q.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Chenon, G.

Clarke, D. R.

Clement, C. E.

C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
[Crossref]

Dayhew, J.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

Diebold, R. M.

Elliott, D. B.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

Ende, D. V. D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Escobar, L. A.

L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
[Crossref]

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

Fox, D.

Ghilardi, M.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Ghosh, C.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

Ghosh, T.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Goss, D. A.

D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).

Hasan, N.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017).
[Crossref]

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Horák, M.

Howland, A.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

Jaeger, E. A.

W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).

Jarosz, J.

Jirásek, M.

Johnson, L.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

Justis, N.

Karkhanis, M.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Keating, M. P.

M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).

Khan, F.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Kim, H.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017).
[Crossref]

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Kulmon, P.

Lee, P.-H.

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

Letocha, C. E.

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990).
[Crossref]

Li, T.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Li, Z.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Lien, V.

Lin, Y.-C.

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

Lipinska-Chwalek, M.

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

Lo, Y.-H.

Long, J.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Lord, S. R.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

Lu, C. J.

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

Maffli, L.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Malzbender, J.

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Mariotti, S. P.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Mastrangelo, C.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

Mastrangelo, C. H.

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017).
[Crossref]

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Meeker, W. Q.

L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
[Crossref]

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

Mikš, A.

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Molliex, N.

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Novák, J.

Novák, P.

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Park, S.-Y.

C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
[Crossref]

Pascolini, D.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Pecanac, G.

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

Pokharel, G. P.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Pokorný, P.

Ren, H.

Ren, H. W.

Resnikoff, S.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Reynolds, T. P.

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
[Crossref]

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Rosset, S.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Scally, A. J.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

Schwartz, S. H.

S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).

Shea, H.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Shian, S.

Sinha, S. K.

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Šmejkal, F.

Tasman, W.

W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).

Thio, S. K.

C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
[Crossref]

Thomas, A. G.

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

Throdahl, M. C.

M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948).
[Crossref]

Torng, C.-C.

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).

Watanabe, K.

K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962).
[Crossref]

West, R. W.

D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).

Wu, B.

Wu, S. T.

H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[Crossref]

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Wu, S.-T.

Yamaguchi, K.

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

Yu, H.

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Zhang, D. Y.

Zhang, X.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Zhou, G.

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Adv. Funct. Mater. (1)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Appl. Math. Model. (1)

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

Appl. Opt. (3)

Bull. World Health Organ. (1)

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Indust. Eng. Chem. (1)

M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948).
[Crossref]

Internat. J. Non-Linear Mech. (1)

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

J. Am. Geriatr. Soc. (1)

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

J. Eur. Ceram. Soc. (1)

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

Micromachines (1)

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Ophthalmol. Clin. North Am. (1)

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
[Crossref]

Opt. Express (6)

Proc. SPIE (1)

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

Rubber Chem. Technol. (1)

K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962).
[Crossref]

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Sens. Actuators A, Phys. (1)

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Sens. Actuators B Chem. (1)

C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
[Crossref]

Stat. Sci. (1)

L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
[Crossref]

Surv. Ophthalmol. (1)

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990).
[Crossref]

Technometrics (1)

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

Other (9)

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Varioptic, http://www.varioptic.com .

Optotune, http://www.optotune.com .

W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).

M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).

S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).

D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of tunable-focus liquid-filled lenses excluding the actuators. The actuators connect to the transparent piston and are responsible for imparting the force F piston . The change in the radius of curvature of the lens front membrane is responsible for change in the optical power of the lens.
Fig. 2.
Fig. 2. Schematic of the experimental setup used to analyze mechanical properties of membranes for tunable-focus liquid-filled lenses subject to periodic deflections.
Fig. 3.
Fig. 3. Experimental setup used to analyze mechanical properties of membranes for tunable-focus liquid-filled lenses. (a) Setup showing different components: ODS, optical displacement (laser) sensor; FP, fill pump; DV, drain valve; CC, control circuits. (b) Close-up view of a flexed membrane with a tiny metal patch and laser spot from the optical displacement sensor. (c) Close-up view of the air-tight chamber, heater, and displacement sensor assembly.
Fig. 4.
Fig. 4. Experimental setup used to introduce tension in elastomeric membranes in a repeatable manner. (a) Schematic showing the two-ring assembly and force points. (b) Schematic showing the introduction of tension in a membrane using this tensor setup. (c) Constructed setup showing the three force gauges and the three displacement gauges with (d) its close-up view showing a Teflon ring glued to a tensed membrane that is then used to transfer the stressed membrane to the flexure setup.
Fig. 5.
Fig. 5. (a) Schematic showing the flexing of the membrane in the periodic fluidic setup. (b) Small data set ( 700 s of 3.45 × 10 5 s ) of real-time measurement of the membrane position versus time.
Fig. 6.
Fig. 6. (a) Normalized membrane peak-to-trough deflection v/s time ( s ) and (b)  log 10 ( S ) v / s temperature (°C) for nontensed PDMS membrane creep analysis study. The values at 55°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 30°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 30°C is 9.866%.
Fig. 7.
Fig. 7. (a) Normalized membrane peak-to-trough deflection v/s time ( s ) and (b)  log 10 ( S ) v / s temperature (°C) for tensed Cosmoshine membrane creep analysis study. The values at 30°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 55°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 55°C is 0.27%.
Fig. 8.
Fig. 8. (a) Normalized membrane peak-to-trough deflection v/s time ( s ) and (b)  log 10 ( S ) v / s temperature (°C) for tensed SKC membrane creep analysis study. The values at 30°C and 50°C were measured first while the membrane creep analysis was being conducted. The value at 27°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 27°C is 21.44%.
Fig. 9.
Fig. 9. (a) Normalized membrane peak-to-trough deflection v/s time ( s ) and (b)  log 10 ( S ) v / s temperature (°C) for tensed PDMS membrane creep analysis study. The values at 55°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 30°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 30°C is 6.68%.
Fig. 10.
Fig. 10. Comparison of performance of two membranes PDMS and Cosmoshine in tunable-focus liquid-filled lenses. Tunable-focus liquid-filled lenses fabricated using (a) PDM membrane and (b) Cosmoshine membrane. (c) Lens optical power (at the lens center) as a function of voltage for the two lenses shown in (a) and (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S = 1 h d h d t ,
S = A · exp ( E a k T ) ,
S 1 S 2 = exp ( E a k ( 1 T 1 1 T 2 ) )
E a = ( k ( 1 T 1 1 T 2 ) ) ln ( S 1 S 2 ) .
A = S 1 exp ( E a k T 1 ) = S 2 exp ( E a k T 2 ) .
P opt = 2 h ( n 1 ) r t 2 .
Δ P opt = 2 Δ h ( n 1 ) r t 2 .