Abstract

In this paper, the free-space optics (FSO) quantum backscatter communication (QBC), inspired by the quantum illumination concept, is described. In this method, the transmitter generates entangled photon pairs. The signal photon is transmitted in the direction of the modulated retro reflector (MRR) or the tag antenna, and the idler photon is moved to the receiver. The MRR communicates by modulating the received photon and retro-reflecting it back to the receiver. QBC could provide performance improvement in comparison to conventional backscatter communications. In this work, a mathematical model of the FSO QBC systems is derived. In an FSO system, the pointing direction jitter is a stochastic process that reduces the communication performance. In this paper, optimization of FSO QBC performance is proposed to minimize the error probability. This could be done by adapting the telescope gain to jitter a standard deviation amplitude.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of an Amplify-and-Forward Dual-Hop Asymmetric RF–FSO Communication System

Sanya Anees and Manav R. Bhatnagar
J. Opt. Commun. Netw. 7(2) 124-135 (2015)

Optimization of a laser satellite communication system with an optical preamplifier

Anna Polishuk and Shlomi Arnon
J. Opt. Soc. Am. A 21(7) 1307-1315 (2004)

Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector

Guowei Yang, Shengzui You, Meihua Bi, Bing Fan, Yang Lu, Xuefang Zhou, Jing Li, Hujun Geng, and Tianshu Wang
Appl. Opt. 56(26) 7474-7483 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription