Abstract

Annually, wood-destroying insects cause severe damage in forests. The widespread population of typographer (Ips typographus), a beetle species from the subfamily of bark beetles (Scolytidae) in Europe, mainly occurs in coniferous wood, especially in spruce (Picea abies), the most silviculturally relevant wood species. The typographer infestation is detected mainly by visual monitoring and without invasive techniques only recognizable at a late stage. Terahertz radiation has shown enormous potential in nondestructive testing. THz measurements in the time-domain performed with a robotic THz system can be used for 3D reconstruction of the internal structure of the samples. In this article, we report the detection of a change in the wood structure of spruce caused by typographer burrows.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Automatic measurement of wood fiber orientation and knot detection using an optical system based on heating conduction

Vincent Daval, Guillaume Pot, Mohamed Belkacemi, Fabrice Meriaudeau, and Robert Collet
Opt. Express 23(26) 33529-33539 (2015)

Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin

Gaël Latour, Jean-Philippe Echard, Balthazar Soulier, Isabelle Emond, Stéphane Vaiedelich, and Mady Elias
Appl. Opt. 48(33) 6485-6491 (2009)

Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue

Lyubov V. Titova, Ayesheshim K. Ayesheshim, Andrey Golubov, Dawson Fogen, Rocio Rodriguez-Juarez, Frank A. Hegmann, and Olga Kovalchuk
Biomed. Opt. Express 4(4) 559-568 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Baier, “Auswirkungen der Baumvitalität auf die Brutbaumqualität der Fichte, (Picea abies Karsten) für Ips typographus (Linné 1758) (Coleoptera, Scolytidae),” Entomol. Gener. 21, 27–35 (1996).
    [Crossref]
  2. P. Baier, “Heranziehung von Baummerkmalen zur Abschätzung der Befallsdisposition der Fichte für rindenbrütende Borkenkäfer,” Forstl. Schriftenreihe, Univ. f. Bodenkultur Wien 7, 191–207 (1994).
  3. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
    [Crossref]
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  5. K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
    [Crossref]
  6. K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
    [Crossref]
  7. C. L. Koch Dandolo, A. Cosentino, and P. U. Jepsen, “Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging,” Stud. Conserv. 60, S159–S166 (2015).
    [Crossref]
  8. M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
    [Crossref]
  9. T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68, 61–68 (2014).
    [Crossref]
  10. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45, 2766–2772 (2006).
    [Crossref]
  11. J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
    [Crossref]
  12. F. C. Beall, “Subsurface sensing of properties and defects in wood and wood products,” Subsurf. Sens. Technol. Appl. 1, 181–204 (2000).
    [Crossref]
  13. Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, “Sub-terahertz imaging of defects in building blocks,” NDT E Int. 42, 28–33 (2009).
    [Crossref]
  14. E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
    [Crossref]
  15. E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
    [Crossref]
  16. K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
    [Crossref]
  17. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
    [Crossref]
  18. J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7, 260–267 (2017).
    [Crossref]

2019 (2)

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
[Crossref]

2017 (3)

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7, 260–267 (2017).
[Crossref]

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
[Crossref]

2015 (2)

C. L. Koch Dandolo, A. Cosentino, and P. U. Jepsen, “Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging,” Stud. Conserv. 60, S159–S166 (2015).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

2014 (2)

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68, 61–68 (2014).
[Crossref]

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

2009 (2)

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, “Sub-terahertz imaging of defects in building blocks,” NDT E Int. 42, 28–33 (2009).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2006 (1)

2000 (1)

F. C. Beall, “Subsurface sensing of properties and defects in wood and wood products,” Subsurf. Sens. Technol. Appl. 1, 181–204 (2000).
[Crossref]

1998 (1)

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
[Crossref]

1996 (1)

P. Baier, “Auswirkungen der Baumvitalität auf die Brutbaumqualität der Fichte, (Picea abies Karsten) für Ips typographus (Linné 1758) (Coleoptera, Scolytidae),” Entomol. Gener. 21, 27–35 (1996).
[Crossref]

1994 (1)

P. Baier, “Heranziehung von Baummerkmalen zur Abschätzung der Befallsdisposition der Fichte für rindenbrütende Borkenkäfer,” Forstl. Schriftenreihe, Univ. f. Bodenkultur Wien 7, 191–207 (1994).

Baier, P.

P. Baier, “Auswirkungen der Baumvitalität auf die Brutbaumqualität der Fichte, (Picea abies Karsten) für Ips typographus (Linné 1758) (Coleoptera, Scolytidae),” Entomol. Gener. 21, 27–35 (1996).
[Crossref]

P. Baier, “Heranziehung von Baummerkmalen zur Abschätzung der Befallsdisposition der Fichte für rindenbrütende Borkenkäfer,” Forstl. Schriftenreihe, Univ. f. Bodenkultur Wien 7, 191–207 (1994).

Balzer, J. C.

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

Bauckenhage, Y.

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

Beall, F. C.

F. C. Beall, “Subsurface sensing of properties and defects in wood and wood products,” Subsurf. Sens. Technol. Appl. 1, 181–204 (2000).
[Crossref]

Busch, S. F.

K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Castro-Camus, E.

K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Citrin, D. S.

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7, 260–267 (2017).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Cosentino, A.

C. L. Koch Dandolo, A. Cosentino, and P. U. Jepsen, “Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging,” Stud. Conserv. 60, S159–S166 (2015).
[Crossref]

Deninger, A.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Dietz, R.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Dong, J.

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7, 260–267 (2017).
[Crossref]

Duling, I. N.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Eppenberger, P.

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

Fedosejevs, R.

Feldmann, J.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
[Crossref]

Fromm, J.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
[Crossref]

Globisch, B.

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

Göbel, T.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Hartley, I. D.

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68, 61–68 (2014).
[Crossref]

Heinrich, A.

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

Hunsche, S.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
[Crossref]

Inagaki, T.

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68, 61–68 (2014).
[Crossref]

Jachim, R.

K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
[Crossref]

Jackson, J. B.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Jelli, E.

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

Jepsen, P. U.

C. L. Koch Dandolo, A. Cosentino, and P. U. Jepsen, “Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging,” Stud. Conserv. 60, S159–S166 (2015).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Kagaya, M.

Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, “Sub-terahertz imaging of defects in building blocks,” NDT E Int. 42, 28–33 (2009).
[Crossref]

Koch, M.

K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
[Crossref]

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
[Crossref]

Koch Dandolo, C. L.

C. L. Koch Dandolo, A. Cosentino, and P. U. Jepsen, “Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging,” Stud. Conserv. 60, S159–S166 (2015).
[Crossref]

Krügener, K.

K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
[Crossref]

K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Labaune, J.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Lavier, C.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Locquet, A.

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7, 260–267 (2017).
[Crossref]

Menu, M.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Mourou, G. A.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Mourou, M.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Nuss, M. C.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
[Crossref]

Öhrström, L.

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

Oyama, Y.

Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, “Sub-terahertz imaging of defects in building blocks,” NDT E Int. 42, 28–33 (2009).
[Crossref]

Rehn, A.

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

Reid, M.

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68, 61–68 (2014).
[Crossref]

M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45, 2766–2772 (2006).
[Crossref]

Rettich, F.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Roehle, H.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Rühli, F.

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

Schell, M.

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Schumacher, P.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
[Crossref]

Schwerdtfeger, M.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Siebrecht, T.

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

Soltani, A.

K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Sommer, S.

K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
[Crossref]

Stübling, E.

K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
[Crossref]

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

Tanabe, T.

Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, “Sub-terahertz imaging of defects in building blocks,” NDT E Int. 42, 28–33 (2009).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tsuchikawa, S.

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68, 61–68 (2014).
[Crossref]

Vieweg, N.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Viöl, W.

K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
[Crossref]

K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Whitaker, J. F.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Williamson, S. L.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Wu, X.

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7, 260–267 (2017).
[Crossref]

Zhen, L.

Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, “Sub-terahertz imaging of defects in building blocks,” NDT E Int. 42, 28–33 (2009).
[Crossref]

Appl. Opt. (1)

Entomol. Gener. (1)

P. Baier, “Auswirkungen der Baumvitalität auf die Brutbaumqualität der Fichte, (Picea abies Karsten) für Ips typographus (Linné 1758) (Coleoptera, Scolytidae),” Entomol. Gener. 21, 27–35 (1996).
[Crossref]

Forstl. Schriftenreihe, Univ. f. Bodenkultur Wien (1)

P. Baier, “Heranziehung von Baummerkmalen zur Abschätzung der Befallsdisposition der Fichte für rindenbrütende Borkenkäfer,” Forstl. Schriftenreihe, Univ. f. Bodenkultur Wien 7, 191–207 (1994).

Holzforschung (1)

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68, 61–68 (2014).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

J. Dong, X. Wu, A. Locquet, and D. S. Citrin, “Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution,” IEEE Trans. Terahertz Sci. Technol. 7, 260–267 (2017).
[Crossref]

J. Infrared Millim. Terahertz Waves (4)

K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, and W. Viöl, “THz properties of typical woods important for European forestry,” J. Infrared Millim. Terahertz Waves 40, 770–774 (2019).
[Crossref]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

E. Stübling, Y. Bauckenhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch, “A THz tomography system for arbitrarily shaped samples,” J. Infrared Millim. Terahertz Waves 38, 1179–1182 (2017).
[Crossref]

K. Krügener, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy,” J. Infrared Millim. Terahertz Waves 38, 495–502 (2017).
[Crossref]

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Meas. Sci. Technol. (1)

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

NDT E Int. (1)

Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, “Sub-terahertz imaging of defects in building blocks,” NDT E Int. 42, 28–33 (2009).
[Crossref]

Sci. Rep. (2)

E. Stübling, A. Rehn, T. Siebrecht, Y. Bauckenhage, L. Öhrström, P. Eppenberger, J. C. Balzer, F. Rühli, and M. Koch, “Application of a robotic THz imaging system for sub-surface analysis of ancient human remains,” Sci. Rep. 9, 3390 (2019).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Stud. Conserv. (1)

C. L. Koch Dandolo, A. Cosentino, and P. U. Jepsen, “Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging,” Stud. Conserv. 60, S159–S166 (2015).
[Crossref]

Subsurf. Sens. Technol. Appl. (1)

F. C. Beall, “Subsurface sensing of properties and defects in wood and wood products,” Subsurf. Sens. Technol. Appl. 1, 181–204 (2000).
[Crossref]

Wood Sci. Technol. (1)

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–442 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Investigated spruce samples. (a), (b) The measurement area is indicated by the rectangle out of aluminum. (c), (d) Samples after removal of the surface show the different structure below the bark caused by the infestation of the typographer.
Fig. 2.
Fig. 2. Surface model of the (a) noninfested and (b) infested spruce sample with the measurement area highlighted by the colored rectangle. White dashed line indicates the position of the corresponding cross section through the THz data presented in (c) and (d), respectively.
Fig. 3.
Fig. 3. Comparison between the THz cross sections and the CT images.