Abstract

A speckle-correlation-based optical lever (SC-OptLev) is constructed for the measurement of small changes in the orientation angle of a surface. The dynamic range of SC-OptLev is found to be twice that of a conventional OptLev for the same experimental configurations. Different filtering mechanisms are implemented, and the correlation results are compared. Two types of computer-automated SC-OptLevs, an open-source-based computing system with a low-cost image sensor and a commercial computing system, are presented with assistive computational modules.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High dynamic range contrast measurements by use of an optical parametric amplifier correlator

Edwin J. Divall and Ian N. Ross
Opt. Lett. 29(19) 2273-2275 (2004)

Correlation-based pointwise processing of dynamic speckle patterns

Elena Stoykova, Branimir Ivanov, and Tania Nikova
Opt. Lett. 39(1) 115-118 (2014)

Correlation distance of dynamic speckles

N. Takai, T. Iwai, and T. Asakura
Appl. Opt. 22(1) 170-177 (1983)

References

  • View by:
  • |
  • |
  • |

  1. R. V. Jones, “Some developments and applications of the optical lever,” J. Sci. Instrum. 38, 37–45 (1961).
    [Crossref]
  2. D. R. Evans and V. S. Craig, “Sensing cantilever beam bending by the optical lever technique and its application to surface stress,” J. Phys. Chem. B 110, 5450–5461 (2006).
    [Crossref]
  3. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
    [Crossref]
  4. R. O. Cook and C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18, 3230–3241 (1979).
    [Crossref]
  5. S. S. R. Inbanathan and G. Balasubramanian, “Convert your common physical balance into a microbalance,” Phys. Teach. 44, 118–119 (2006).
    [Crossref]
  6. K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
    [Crossref]
  7. D. Shoemaker and J. Tappan, “Optical lever design requirements review,” .
  8. E. Hirose, K. Kawabe, D. Sigg, R. Adhikari, and P. R. Saulson, “Angular instability due to radiation pressure in the LIGO gravitational-wave detector,” Appl. Opt. 49, 3474–3484 (2010).
    [Crossref]
  9. K. D. Hinsch, F. McLysaght, and K. Wolff, “Tilt-compensated real-time holographic speckle correlation,” Appl. Opt. 31, 5937–5939 (1992).
    [Crossref]
  10. K. D. Hinsch, T. Fricke-Begemann, G. Gülker, and K. Wolff, “Speckle correlation for the analysis of random processes at rough surfaces,” Opt. Laser Eng. 33, 87–105 (2000).
    [Crossref]
  11. T. Fricke-Begemann and K. D. Hinsch, “Measurement of random processes at rough surfaces with digital speckle correlation,” J. Opt. Soc. Am. A 21, 252–262 (2004).
    [Crossref]
  12. N. Andrés, J. Lobera, M. P. Arroyo, and L. A. Angurel, “Two-dimensional quantification of the corrosion process in metal surfaces using digital speckle pattern interferometry,” Appl. Opt. 50, 1323–1328 (2011).
    [Crossref]
  13. P. Smíd, P. Horváth, and M. Hrabovský, “Speckle correlation method used to detect an object’s surface slope,” Appl. Opt. 45, 6932–6939 (2006).
    [Crossref]
  14. D. Khodadad, A. K. Singh, G. Pedrini, and M. Sjödahl, “Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation,” Appl. Opt. 55, 7735–7743 (2016).
    [Crossref]
  15. M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).
    [Crossref]
  16. D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, “Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform,” Appl. Opt. 44, 2720–2727 (2005).
    [Crossref]
  17. I. Yamaguchi, “A laser-speckle strain-gauge,” J. Phys. E 14, 1270–1273 (1981).
    [Crossref]
  18. Y. Fan, Z. Qiu, and R. Zhao, “Laser lever method in the application of Young’s modulus measurement,” IOP Conf. Ser. Mater. Sci. Eng. 207, 012058 (2017).
    [Crossref]
  19. V. Perez, B.-J. Chang, and E. H. K. Stelzer, “Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution,” Sci. Rep. 6, 37149 (2016).
    [Crossref]
  20. M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH),” Opt. Express 26, 18143–18154 (2018).
    [Crossref]
  21. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
    [Crossref]
  22. J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, 1975).
  23. D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson-Lucy algorithm,” J. Opt. Soc. Am. A 12, 58–65 (1995).
    [Crossref]
  24. A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, "Matched, phase-only and non-linear filters," figshare, https://doi.org/10.6084/m9.figshare.8048123 .
  25. A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, “Wiener and Lucy–Richardson filters,” figshare, https://doi.org/10.6084/m9.figshare.8048117 .
  26. S. Bhattacharya, A. Vijayakumar, J. L. Sruthy, and J. Rosen, “Speckle correlation technique to improve the dynamic range of an optical lever,” in OSA Laser Congress, submitted for publication.
  27. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography—a new type of incoherent digital holograms,” Opt. Express 24, 12430–12441 (2016).
    [Crossref]
  28. A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography—a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25, 13883–13896 (2017) .
    [Crossref]
  29. M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7, 11555 (2017) .
    [Crossref]
  30. A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, "Building dependencies for automated image acquisition using Octave," figshare, https://doi.org/10.6084/m9.figshare.8048114.
  31. A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, "Peak detection and angle calculation," figshare, https://doi.org/10.6084/m9.figshare.8048120.
  32. A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, "Automated image acquisition using MATLAB," figshare, https://doi.org/10.6084/m9.figshare.8048111.

2018 (2)

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH),” Opt. Express 26, 18143–18154 (2018).
[Crossref]

2017 (3)

A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography—a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25, 13883–13896 (2017) .
[Crossref]

Y. Fan, Z. Qiu, and R. Zhao, “Laser lever method in the application of Young’s modulus measurement,” IOP Conf. Ser. Mater. Sci. Eng. 207, 012058 (2017).
[Crossref]

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7, 11555 (2017) .
[Crossref]

2016 (3)

2011 (1)

2010 (1)

2006 (3)

P. Smíd, P. Horváth, and M. Hrabovský, “Speckle correlation method used to detect an object’s surface slope,” Appl. Opt. 45, 6932–6939 (2006).
[Crossref]

D. R. Evans and V. S. Craig, “Sensing cantilever beam bending by the optical lever technique and its application to surface stress,” J. Phys. Chem. B 110, 5450–5461 (2006).
[Crossref]

S. S. R. Inbanathan and G. Balasubramanian, “Convert your common physical balance into a microbalance,” Phys. Teach. 44, 118–119 (2006).
[Crossref]

2005 (1)

2004 (1)

2000 (1)

K. D. Hinsch, T. Fricke-Begemann, G. Gülker, and K. Wolff, “Speckle correlation for the analysis of random processes at rough surfaces,” Opt. Laser Eng. 33, 87–105 (2000).
[Crossref]

1995 (1)

1994 (1)

1992 (1)

1989 (1)

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

1984 (1)

1981 (1)

I. Yamaguchi, “A laser-speckle strain-gauge,” J. Phys. E 14, 1270–1273 (1981).
[Crossref]

1979 (1)

1961 (1)

R. V. Jones, “Some developments and applications of the optical lever,” J. Sci. Instrum. 38, 37–45 (1961).
[Crossref]

Adhikari, R.

Akutsu, T.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Alexander, S.

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

Andrés, N.

Angurel, L. A.

Arroyo, M. P.

Balasubramanian, G.

S. S. R. Inbanathan and G. Balasubramanian, “Convert your common physical balance into a microbalance,” Phys. Teach. 44, 118–119 (2006).
[Crossref]

Bhattacharya, S.

S. Bhattacharya, A. Vijayakumar, J. L. Sruthy, and J. Rosen, “Speckle correlation technique to improve the dynamic range of an optical lever,” in OSA Laser Congress, submitted for publication.

Brinicombe, A. M.

Chang, B.-J.

V. Perez, B.-J. Chang, and E. H. K. Stelzer, “Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution,” Sci. Rep. 6, 37149 (2016).
[Crossref]

Cho, K.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Cook, R. O.

Craig, V. S.

D. R. Evans and V. S. Craig, “Sensing cantilever beam bending by the optical lever technique and its application to surface stress,” J. Phys. Chem. B 110, 5450–5461 (2006).
[Crossref]

Doi, K.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Elings, V.

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

Evans, D. R.

D. R. Evans and V. S. Craig, “Sensing cantilever beam bending by the optical lever technique and its application to surface stress,” J. Phys. Chem. B 110, 5450–5461 (2006).
[Crossref]

Fan, Y.

Y. Fan, Z. Qiu, and R. Zhao, “Laser lever method in the application of Young’s modulus measurement,” IOP Conf. Ser. Mater. Sci. Eng. 207, 012058 (2017).
[Crossref]

Fish, D. A.

Fricke-Begemann, T.

T. Fricke-Begemann and K. D. Hinsch, “Measurement of random processes at rough surfaces with digital speckle correlation,” J. Opt. Soc. Am. A 21, 252–262 (2004).
[Crossref]

K. D. Hinsch, T. Fricke-Begemann, G. Gülker, and K. Wolff, “Speckle correlation for the analysis of random processes at rough surfaces,” Opt. Laser Eng. 33, 87–105 (2000).
[Crossref]

Gianino, P. D.

Gülker, G.

K. D. Hinsch, T. Fricke-Begemann, G. Gülker, and K. Wolff, “Speckle correlation for the analysis of random processes at rough surfaces,” Opt. Laser Eng. 33, 87–105 (2000).
[Crossref]

Gurley, J.

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

Hamm, C. W.

Hansma, P. K.

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

Hasegawaa, K.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Hellemans, L.

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

Hennelly, B. M.

Hinsch, K. D.

Hirose, E.

Horner, J. L.

Horváth, P.

Hrabovský, M.

Inbanathan, S. S. R.

S. S. R. Inbanathan and G. Balasubramanian, “Convert your common physical balance into a microbalance,” Phys. Teach. 44, 118–119 (2006).
[Crossref]

Jones, R. V.

R. V. Jones, “Some developments and applications of the optical lever,” J. Sci. Instrum. 38, 37–45 (1961).
[Crossref]

Kambara, S.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Kashter, Y.

Kawabe, K.

Kawamura, S.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Kelly, D. P.

Kelner, R.

Khodadad, D.

Kirii, S.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Kokeyamaa, K.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Kumar, M.

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7, 11555 (2017) .
[Crossref]

Lobera, J.

Longmire, M.

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

Marti, O.

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

McLysaght, F.

Nakano, M.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Ohishi, N.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Park, J. G.

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Pedrini, G.

Perez, V.

V. Perez, B.-J. Chang, and E. H. K. Stelzer, “Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution,” Sci. Rep. 6, 37149 (2016).
[Crossref]

Pike, E. R.

Qiu, Z.

Y. Fan, Z. Qiu, and R. Zhao, “Laser lever method in the application of Young’s modulus measurement,” IOP Conf. Ser. Mater. Sci. Eng. 207, 012058 (2017).
[Crossref]

Rai, M. R.

Rosen, J.

Saulson, P. R.

Schneir, J.

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

Sheridan, J. T.

Shoemaker, D.

D. Shoemaker and J. Tappan, “Optical lever design requirements review,” .

Sigg, D.

Singh, A. K.

Sjödahl, M.

Smíd, P.

Sruthy, J. L.

S. Bhattacharya, A. Vijayakumar, J. L. Sruthy, and J. Rosen, “Speckle correlation technique to improve the dynamic range of an optical lever,” in OSA Laser Congress, submitted for publication.

Stelzer, E. H. K.

V. Perez, B.-J. Chang, and E. H. K. Stelzer, “Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution,” Sci. Rep. 6, 37149 (2016).
[Crossref]

Tappan, J.

D. Shoemaker and J. Tappan, “Optical lever design requirements review,” .

Vijayakumar, A.

Walker, J. G.

Wolff, K.

K. D. Hinsch, T. Fricke-Begemann, G. Gülker, and K. Wolff, “Speckle correlation for the analysis of random processes at rough surfaces,” Opt. Laser Eng. 33, 87–105 (2000).
[Crossref]

K. D. Hinsch, F. McLysaght, and K. Wolff, “Tilt-compensated real-time holographic speckle correlation,” Appl. Opt. 31, 5937–5939 (1992).
[Crossref]

Yamaguchi, I.

I. Yamaguchi, “A laser-speckle strain-gauge,” J. Phys. E 14, 1270–1273 (1981).
[Crossref]

Zhao, R.

Y. Fan, Z. Qiu, and R. Zhao, “Laser lever method in the application of Young’s modulus measurement,” IOP Conf. Ser. Mater. Sci. Eng. 207, 012058 (2017).
[Crossref]

Appl. Opt. (9)

R. O. Cook and C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18, 3230–3241 (1979).
[Crossref]

E. Hirose, K. Kawabe, D. Sigg, R. Adhikari, and P. R. Saulson, “Angular instability due to radiation pressure in the LIGO gravitational-wave detector,” Appl. Opt. 49, 3474–3484 (2010).
[Crossref]

K. D. Hinsch, F. McLysaght, and K. Wolff, “Tilt-compensated real-time holographic speckle correlation,” Appl. Opt. 31, 5937–5939 (1992).
[Crossref]

N. Andrés, J. Lobera, M. P. Arroyo, and L. A. Angurel, “Two-dimensional quantification of the corrosion process in metal surfaces using digital speckle pattern interferometry,” Appl. Opt. 50, 1323–1328 (2011).
[Crossref]

P. Smíd, P. Horváth, and M. Hrabovský, “Speckle correlation method used to detect an object’s surface slope,” Appl. Opt. 45, 6932–6939 (2006).
[Crossref]

D. Khodadad, A. K. Singh, G. Pedrini, and M. Sjödahl, “Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation,” Appl. Opt. 55, 7735–7743 (2016).
[Crossref]

M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).
[Crossref]

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, “Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform,” Appl. Opt. 44, 2720–2727 (2005).
[Crossref]

J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
[Crossref]

IOP Conf. Ser. Mater. Sci. Eng. (1)

Y. Fan, Z. Qiu, and R. Zhao, “Laser lever method in the application of Young’s modulus measurement,” IOP Conf. Ser. Mater. Sci. Eng. 207, 012058 (2017).
[Crossref]

J. Appl. Phys. (1)

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic‐resolution atomic‐force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (1)

D. R. Evans and V. S. Craig, “Sensing cantilever beam bending by the optical lever technique and its application to surface stress,” J. Phys. Chem. B 110, 5450–5461 (2006).
[Crossref]

J. Phys. E (1)

I. Yamaguchi, “A laser-speckle strain-gauge,” J. Phys. E 14, 1270–1273 (1981).
[Crossref]

J. Sci. Instrum. (1)

R. V. Jones, “Some developments and applications of the optical lever,” J. Sci. Instrum. 38, 37–45 (1961).
[Crossref]

Opt. Express (3)

Opt. Laser Eng. (1)

K. D. Hinsch, T. Fricke-Begemann, G. Gülker, and K. Wolff, “Speckle correlation for the analysis of random processes at rough surfaces,” Opt. Laser Eng. 33, 87–105 (2000).
[Crossref]

Phys. Lett. A (1)

K. Kokeyamaa, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawaa, N. Ohishi, K. Doi, and S. Kawamura, “Demonstration for a two-axis interferometric tilt sensor in KAGRA,” Phys. Lett. A 382, 1950–1955 (2018).
[Crossref]

Phys. Teach. (1)

S. S. R. Inbanathan and G. Balasubramanian, “Convert your common physical balance into a microbalance,” Phys. Teach. 44, 118–119 (2006).
[Crossref]

Sci. Rep. (2)

V. Perez, B.-J. Chang, and E. H. K. Stelzer, “Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution,” Sci. Rep. 6, 37149 (2016).
[Crossref]

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7, 11555 (2017) .
[Crossref]

Other (8)

A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, "Building dependencies for automated image acquisition using Octave," figshare, https://doi.org/10.6084/m9.figshare.8048114.

A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, "Peak detection and angle calculation," figshare, https://doi.org/10.6084/m9.figshare.8048120.

A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, "Automated image acquisition using MATLAB," figshare, https://doi.org/10.6084/m9.figshare.8048111.

A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, "Matched, phase-only and non-linear filters," figshare, https://doi.org/10.6084/m9.figshare.8048123 .

A. Vijayakumar, D. Jayavel, M. Muthaiah, S. Bhattacharya, and J. Rosen, “Wiener and Lucy–Richardson filters,” figshare, https://doi.org/10.6084/m9.figshare.8048117 .

S. Bhattacharya, A. Vijayakumar, J. L. Sruthy, and J. Rosen, “Speckle correlation technique to improve the dynamic range of an optical lever,” in OSA Laser Congress, submitted for publication.

J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, 1975).

D. Shoemaker and J. Tappan, “Optical lever design requirements review,” .

Supplementary Material (8)

NameDescription
» Code 1       Octave code for implementing matched filter, phase-only filter and non-linear filter.
» Code 2       MATLAB code for implementing Wiener filter and Lucy-Richardson filter.
» Code 3       Code for building dependencies for Octave image acquisition,capturing the speckle motion using a web camera, and displayingin real-time the motion of the correlation peak,saving it as a video clip.
» Code 4       Peak detection and tilt angle calculation.
» Code 5       Image acquisition with MATLAB and capturing the speckle motion using a web camera and displayingin real-time the motion of the correlation peak,saving it as a video clip.
» Visualization 1       Video clip of the motion of the correlation peak when the mirror was tilted and the recorded frames were not zero padded. (Octave)
» Visualization 2       Video clip of the motion of the correlation peak when the mirror was tilted and the recorded frames were zero padded. (Octave)
» Visualization 3       Video clip of the motion of the correlation peak when the mirror was tilted and the recorded frames were not zero padded. (MATLAB)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Optical configuration of (a) conventional OptLev and (b) SC-OptLev.
Fig. 2.
Fig. 2. Gerchberg–Saxton algorithm for synthesizing diffusers with different scattering degrees.
Fig. 3.
Fig. 3. Variation of the speckle intensity pattern with distances. Images of a section of diffuser functions for scattering degrees 0.2, 0.1, and 0.04, speckle intensity patterns, and the respective autocorrelation functions for distances 25 cm (blue), 50 cm (red), and 100 cm (amber) are compared.
Fig. 4.
Fig. 4. (a)–(d) Speckle patterns, correlation results using (e)–(h) matched filter, (i)–(l) phase-only filter, (m)–(p) nonlinear filter, (q)–(t) Wiener filter, and (u)–(x) Lucy–Richardson filter for (βx=0°, βy=0°); βx=0.55°, βy=0.35°; and (βx=0.07°, βy=0.04°), respectively. Green dotted line indicates the sensor area.
Fig. 5.
Fig. 5. Images of the speckle intensity patterns and their autocorrelation functions using a nonlinear filter o=0.6 and r=0.2.
Fig. 6.
Fig. 6. Schematic of the computational module and the process sequence. Video clips showing the motion of the correlation peak without and with zero-padding created using Octave is shown in Visualization 1 and Visualization 2, respectively. The video clip created using MATLAB is shown in Visualization 3.

Tables (1)

Tables Icon

Table 1. Comparison of SNR, FWHM and Computation Time for Matched Filter, Phase-Only Filter, Nonlinear Correlation, Wiener Filter and Lucy–Richardson Methoda