Abstract

A detailed understanding of space objects is one of the important goals of space situational awareness. The geostationary orbit (GEO) belt is an important space asset for human beings, so the identification of GEO satellites is one of the measures to ensure the safety of GEO objects (GEOs). In this paper, we propose using deep learning based on recurrent neural networks (RNNs) and convolutional neural networks (CNNs), and multiple Kernel learning (MKL) to identify the shape and attitude of GEOs synchronously via light curves. Our algorithm focuses mainly on optical data obtained from the real measured data collected by optical laboratory and computer simulation. We first acquired light curves of five GEO satellites for 1 year; then, we constructed a network architecture consisting of CNNs and RNNs to automatically extract the different scale characteristics of the collected light curves of GEOs. Next, we use the MKL to fuse the extracted features of different scales. Finally, the support vector machine is used to provide the classification and recognition results of the shape and attitude of five GEOs. The network architecture proposed is compared with more conventional machine learning techniques (e.g., principal component analysis, linear discriminant analysis) and is shown to outperform such methods. At the same time, the classification effect of the multiple kernel is better than the single kernel in this experiment.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography

Atefeh Abdolmanafi, Luc Duong, Nagib Dahdah, and Farida Cheriet
Biomed. Opt. Express 8(2) 1203-1220 (2017)

Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search

Jason Kugelman, David Alonso-Caneiro, Scott A. Read, Stephen J. Vincent, and Michael J. Collins
Biomed. Opt. Express 9(11) 5759-5777 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription