Abstract

Based on the focusing feature of a metalens, we numerically studied its application in optical manipulation of Rayleigh particles. Three types of metalenses—point focusing, line focusing, and line focusing with phase gradient—were designed. Simulation results using the finite-difference time-domain method showed that the incident optical beams could be focused into a spot or a line for stable particle trapping. Through engineering a gradient phase in the direction of the focal line, the proposed metalens can push the particles along the line. This provides a unique capability to move particles along a line without the need of any mechanical movement. Given its thin sheet structure and compactness, the proposed metalens can be easily integrated into microfluidic and optical tweezers systems, and it can find potential applications in optical sorting of biological cells.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically induced rotation of Rayleigh particles by arbitrary photonic spin

Guanghao Rui, Ying Li, Sichao Zhou, Yusong Wang, Bing Gu, Yiping Cui, and Qiwen Zhan
Photon. Res. 7(1) 69-79 (2019)

Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field

Guanghao Rui, Xiaoyan Wang, Bing Gu, Qiwen Zhan, and Yiping Cui
Opt. Express 24(7) 7212-7223 (2016)

Optical trapping with planar silicon metalenses

Georgiy Tkachenko, Daan Stellinga, Andrei Ruskuc, Mingzhou Chen, Kishan Dholakia, and Thomas F. Krauss
Opt. Lett. 43(14) 3224-3227 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription