Abstract

Just-noticeable difference (JND) is an important characteristic of the human visual system (HVS), and some established JND models imitating the perception of human eyes already exist. However, their utilization in stereoscopic image quality assessment (SIQA) remains limited. To better simulate how HVS senses 3D images under a no-reference situation, a novel SIQA method based on multiple JND models is proposed in this paper. In our metric, the stereoscopic image pairs are decomposed into multi-scale monocular views and binocular views. Then, texture and edge information of these multi-scale images is extracted. Next, a monocular JND model, a binocular JND model, and a depth JND model are separately applied to the extracted features and the depth map. Finally, these features are synthesized and mapped to objective scores. Through experiment and comparison on public 3D image databases, the proposed method shows a competitive advantage over most state-of-the-art SIQA methods, which indicates that it has a promising prospect in practical applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-reference quality assessment of stereoscopic images by learning binocular visual properties

Jian Ma, Ping An, Liquan Shen, and Kai Li
Appl. Opt. 56(29) 8291-8302 (2017)

Monocular–binocular feature fidelity induced index for stereoscopic image quality assessment

Feng Shao, Kemeng Li, Gangyi Jiang, Mei Yu, and Changhong Yu
Appl. Opt. 54(33) 9671-9680 (2015)

Structure descriptor based on just noticeable difference for texture image classification

Xikui Miao, Wei Zhao, Xiaolong Li, and Xiaoyu Yang
Appl. Opt. 58(24) 6504-6512 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription