Abstract

We operate a large helium–neon-based ring laser interferometer with single-crystal GaAs/AlGaAs optical coatings on the 2s22p4 transition of neon at a wavelength of 1.152276 μm. For either single longitudinal- or phase-locked multi-mode operation, the preferable gas composition for gyroscopic operation is 0.2 and 0.3 mbar of 50:50 neon with total pressures between 6–12 mbar. The Earth rotation bias is sufficient to unlock the device, yielding a Sagnac frequency of approximately 60 Hz.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensing earth’s rotation with a helium–neon ring laser operating at 1.15  μm

K. Ulrich Schreiber, Robert J. Thirkettle, Robert B. Hurst, David Follman, Garrett D. Cole, Markus Aspelmeyer, and Jon-Paul R. Wells
Opt. Lett. 40(8) 1705-1708 (2015)

Mode behavior in ultralarge ring lasers

Robert B. Hurst, Robert W. Dunn, K. Ulrich Schreiber, Robert J. Thirkettle, and Graeme K. MacDonald
Appl. Opt. 43(11) 2337-2346 (2004)

Mode selection in an ultralarge ring laser gyro

Richard D. Graham, Robert B. Hurst, K-Ulrich Schreiber, and Jon-Paul R. Wells
Appl. Opt. 51(22) 5591-5595 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. U. Schreiber and J. P. R. Wells, “Invited review article: large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84, 041101 (2013).
    [Crossref]
  2. K. U. Schreiber, T. Klügel, J. P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
    [Crossref]
  3. R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
    [Crossref]
  4. W. M. Macek and D. T. M. Davis, “Rotation rate sensing with travelling-wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
    [Crossref]
  5. K. U. Schreiber, R. J. Thirkettle, R. B. Hurst, D. Follman, G. D. Cole, M. Aspelmeyer, and J.-P. R. Wells, “Sensing Earth’s rotation with a helium-neon ring laser operating at 1.15  μm,” Opt. Lett. 40, 1705–1708 (2015).
    [Crossref]
  6. G. D. Cole, W. Zhang, B. J. Bjork, D. Follman, P. Heu, C. Deutsch, L. Sonderhouse, J. Robinson, C. Franz, A. Alexandrovski, M. Notcutt, O. H. Heckl, J. Ye, and M. Aspelmeyer, “High-performance near- and mid-infrared crystalline coatings,” Optica 3, 647–656 (2016).
    [Crossref]
  7. W. Bennett and J. Knutson, “Simultaneous laser oscillation on the neon doublet at 1.1523 μ,” Proc. IEEE 52, 861–862 (1964).
    [Crossref]
  8. W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429 (1964).
    [Crossref]
  9. J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
    [Crossref]
  10. M. Marchio, R. Flaminio, L. Pinard, D. Forest, C. Deutsch, P. Heu, D. Follman, and G. D. Cole, “Optical performance of large-area crystalline coatings,” Opt. Express 26, 6114–6125 (2018).
    [Crossref]

2018 (1)

2016 (1)

2015 (1)

2013 (1)

K. U. Schreiber and J. P. R. Wells, “Invited review article: large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

2012 (1)

J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
[Crossref]

2011 (1)

K. U. Schreiber, T. Klügel, J. P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
[Crossref]

2009 (1)

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

1964 (2)

W. Bennett and J. Knutson, “Simultaneous laser oscillation on the neon doublet at 1.1523 μ,” Proc. IEEE 52, 861–862 (1964).
[Crossref]

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429 (1964).
[Crossref]

1963 (1)

W. M. Macek and D. T. M. Davis, “Rotation rate sensing with travelling-wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
[Crossref]

Alexandrovski, A.

Aspelmeyer, M.

Bennett, W.

W. Bennett and J. Knutson, “Simultaneous laser oscillation on the neon doublet at 1.1523 μ,” Proc. IEEE 52, 861–862 (1964).
[Crossref]

Bjork, B. J.

Cole, G. D.

Davis, D. T. M.

W. M. Macek and D. T. M. Davis, “Rotation rate sensing with travelling-wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
[Crossref]

Deutsch, C.

Flaminio, R.

Follman, D.

Forest, D.

Franz, C.

Gebauer, A.

K. U. Schreiber, T. Klügel, J. P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
[Crossref]

Graham, R.

J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
[Crossref]

Graham, R. D.

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

Heckl, O. H.

Heu, P.

Holdaway, J.

J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
[Crossref]

Hurst, R. B.

K. U. Schreiber, R. J. Thirkettle, R. B. Hurst, D. Follman, G. D. Cole, M. Aspelmeyer, and J.-P. R. Wells, “Sensing Earth’s rotation with a helium-neon ring laser operating at 1.15  μm,” Opt. Lett. 40, 1705–1708 (2015).
[Crossref]

J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
[Crossref]

K. U. Schreiber, T. Klügel, J. P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
[Crossref]

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

Klügel, T.

K. U. Schreiber, T. Klügel, J. P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
[Crossref]

Knutson, J.

W. Bennett and J. Knutson, “Simultaneous laser oscillation on the neon doublet at 1.1523 μ,” Proc. IEEE 52, 861–862 (1964).
[Crossref]

Lamb, W. E.

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429 (1964).
[Crossref]

Macek, W. M.

W. M. Macek and D. T. M. Davis, “Rotation rate sensing with travelling-wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
[Crossref]

Marchio, M.

Notcutt, M.

Pinard, L.

Rabeendran, N.

J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
[Crossref]

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

Robinson, J.

Schreiber, K. U.

K. U. Schreiber, R. J. Thirkettle, R. B. Hurst, D. Follman, G. D. Cole, M. Aspelmeyer, and J.-P. R. Wells, “Sensing Earth’s rotation with a helium-neon ring laser operating at 1.15  μm,” Opt. Lett. 40, 1705–1708 (2015).
[Crossref]

K. U. Schreiber and J. P. R. Wells, “Invited review article: large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
[Crossref]

K. U. Schreiber, T. Klügel, J. P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
[Crossref]

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

Sonderhouse, L.

Stedman, G. E.

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

Thirkettle, R. J.

K. U. Schreiber, R. J. Thirkettle, R. B. Hurst, D. Follman, G. D. Cole, M. Aspelmeyer, and J.-P. R. Wells, “Sensing Earth’s rotation with a helium-neon ring laser operating at 1.15  μm,” Opt. Lett. 40, 1705–1708 (2015).
[Crossref]

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

Wells, J. P. R.

K. U. Schreiber and J. P. R. Wells, “Invited review article: large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
[Crossref]

K. U. Schreiber, T. Klügel, J. P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
[Crossref]

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

Wells, J.-P. R.

Ye, J.

Zhang, W.

Appl. Phys. Lett. (1)

W. M. Macek and D. T. M. Davis, “Rotation rate sensing with travelling-wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
[Crossref]

J. Appl. Phys. (1)

R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J. P. R. Wells, “Experiments with an 834, 2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
[Crossref]

Metrologia (1)

J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J. P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209–212 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Rev. (1)

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429 (1964).
[Crossref]

Phys. Rev. Lett. (1)

K. U. Schreiber, T. Klügel, J. P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
[Crossref]

Proc. IEEE (1)

W. Bennett and J. Knutson, “Simultaneous laser oscillation on the neon doublet at 1.1523 μ,” Proc. IEEE 52, 861–862 (1964).
[Crossref]

Rev. Sci. Instrum. (1)

K. U. Schreiber and J. P. R. Wells, “Invited review article: large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) PR-1 laser system; (b),(c) the geographic orientation of the device with respect to the Earth’s rotation axis.
Fig. 2.
Fig. 2. Schematic of the experimental layout.
Fig. 3.
Fig. 3. Laser output power as a function of neon pressure P Ne .
Fig. 4.
Fig. 4. Measured laser output power at fixed neon partial pressures between 0.1 and 0.6 mbar as a function of total cavity pressure having a constant radio frequency (input) excitation of 20 W.
Fig. 5.
Fig. 5. Measured laser output power at fixed neon partial pressures between 0.1 and 0.6 mbar as a function of total cavity pressure. The shaded area denoted (i) indicates the guaranteed single longitudinal mode operation regime. The area denoted (ii) represents multi-mode operation and that denoted (iii) is a region for which phase-locked multi-mode operation can be attained.
Fig. 6.
Fig. 6. (a) Relative Allan deviation measured at 0.2 mbar of 50:50 neon with a total pressure of either 2 or 6 mbar, (b) power spectrum of the Sagnac time series showing the Earth line and sidebands due to building motion.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ f = 4 A λ P n · Ω E ,
δ f = 4 A λ P Ω E cos ϕ cos θ T .

Metrics