Abstract

Shortwave infrared (SWIR) polarimetric imaging has been found very effective in various applications. However, the low resolution of the SWIR camera severely limits the capacity of this technique. Image reconstruction methods have been developed to improve the spatial resolution, but these methods typically do not consider the polarized information that the images may contain. In this paper, we propose a high-resolution reconstruction method for SWIR images based on the spatial information of visible images without losing polarized information in the SWIR image. Experimental results demonstrate that this method is feasible to reconstruct high-resolution polarized SWIR images. We have also demonstrated its potential application in image fusion.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion

Jian Liang, Wenfei Zhang, Liyong Ren, Haijuan Ju, and Enshi Qu
Appl. Opt. 55(29) 8221-8226 (2016)

Infrared and visible image fusion using multiscale directional nonlocal means filter

Xiang Yan, Hanlin Qin, Jia Li, Huixin Zhou, Jing-guo Zong, and Qingjie Zeng
Appl. Opt. 54(13) 4299-4308 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Åkerlind, T. Hallberg, J. Eriksson, H. Kariis, and D. Bergström, “Optical polarization-background and camouflage,” Proc. SPIE 10432, 1043204 (2017).
    [Crossref]
  2. F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Opt. 55, 8690–8697 (2016).
    [Crossref]
  3. F. Parnet, J. Fade, N. O. Quijano, G. Loas, L. Frein, and M. Alouini, “Free-space active polarimetric imager operating at 1.55  μm by orthogonality breaking sensing,” Opt. Lett. 42, 723–726 (2017).
    [Crossref]
  4. A. Ibrahim, A. Gilerson, J. Chowdhary, and S. Ahmed, “Retrieval of macro- and micro-physical properties of oceanic hydrosols from polarimetric observations,” Remote Sens. Environ. 186, 548–566 (2016).
    [Crossref]
  5. Z. Wu, R. Liao, X. Sun, W. Liu, H. Tan, and S. Sun, “Digital quantification of DNA by mapping polarization degree related with coding gold nanorods,” Appl. Opt. 56, 9301–9307 (2017).
    [Crossref]
  6. J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
    [Crossref]
  7. C. Stolz, A. Z. Lechiche, and O. Aubreton, “Short review of polarimetric imaging based method for 3D measurements,” Proc. SPIE 9896, 98960P (2016).
    [Crossref]
  8. A. J. Yuffa, K. P. Gurton, and G. Videen, “Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging,” Appl. Opt. 53, 8514–8521 (2014).
    [Crossref]
  9. H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
    [Crossref]
  10. J. Liang, L. Ren, H. Ju, W. Zhang, and E. Qu, “Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization,” Opt. Express 23, 26146–26157 (2015).
    [Crossref]
  11. Y. Zhu, J. Shi, Y. Yang, and G. Zeng, “Polarization difference ghost imaging,” Appl. Opt. 54, 1279–1284 (2015).
    [Crossref]
  12. J. Eriksson, D. Bergström, and I. Renhorn, “Characterization and performance of a LWIR polarimetric imager,” Proc. SPIE 10434, 1043407 (2017).
    [Crossref]
  13. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
    [Crossref]
  14. M. A. Sawyer and M. W. Hyde, “Material characterization using passive multispectral polarimetric imagery,” Proc. SPIE 8873, 88730Y (2013).
    [Crossref]
  15. D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
    [Crossref]
  16. D. A. Lavigne, M. Breton, G. Frounier, M. Pichette, and V. River, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE 7300, 730010 (2009).
    [Crossref]
  17. X. Yan, H. Qin, J. Li, H. Zhou, J. Zong, and Q. Zeng, “Infrared and visible image fusion using multiscale directional nonlocal means filter,” Appl. Opt. 54, 4299–4308 (2015).
    [Crossref]
  18. Z. Sadeghipoor, Y. M. Lu, and S. Süsstrunk, “Gradient-based correction of chromatic aberration in the joint acquisition of color and near-infrared images,” Proc. SPIE 9404, 94040F (2015).
    [Crossref]
  19. Z. Chen, X. Wang, and R. Liang, “RGB-NIR multispectral camera,” Opt. Express 22, 4985–4994 (2014).
    [Crossref]
  20. J. Liang, W. Zhang, L. Ren, H. Ju, and E. Qu, “Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion,” Appl. Opt. 55, 8221–8226 (2016).
    [Crossref]

2017 (6)

C. Åkerlind, T. Hallberg, J. Eriksson, H. Kariis, and D. Bergström, “Optical polarization-background and camouflage,” Proc. SPIE 10432, 1043204 (2017).
[Crossref]

F. Parnet, J. Fade, N. O. Quijano, G. Loas, L. Frein, and M. Alouini, “Free-space active polarimetric imager operating at 1.55  μm by orthogonality breaking sensing,” Opt. Lett. 42, 723–726 (2017).
[Crossref]

Z. Wu, R. Liao, X. Sun, W. Liu, H. Tan, and S. Sun, “Digital quantification of DNA by mapping polarization degree related with coding gold nanorods,” Appl. Opt. 56, 9301–9307 (2017).
[Crossref]

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
[Crossref]

J. Eriksson, D. Bergström, and I. Renhorn, “Characterization and performance of a LWIR polarimetric imager,” Proc. SPIE 10434, 1043407 (2017).
[Crossref]

2016 (4)

C. Stolz, A. Z. Lechiche, and O. Aubreton, “Short review of polarimetric imaging based method for 3D measurements,” Proc. SPIE 9896, 98960P (2016).
[Crossref]

A. Ibrahim, A. Gilerson, J. Chowdhary, and S. Ahmed, “Retrieval of macro- and micro-physical properties of oceanic hydrosols from polarimetric observations,” Remote Sens. Environ. 186, 548–566 (2016).
[Crossref]

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Opt. 55, 8690–8697 (2016).
[Crossref]

J. Liang, W. Zhang, L. Ren, H. Ju, and E. Qu, “Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion,” Appl. Opt. 55, 8221–8226 (2016).
[Crossref]

2015 (4)

2014 (2)

2013 (1)

M. A. Sawyer and M. W. Hyde, “Material characterization using passive multispectral polarimetric imagery,” Proc. SPIE 8873, 88730Y (2013).
[Crossref]

2011 (1)

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

2009 (1)

D. A. Lavigne, M. Breton, G. Frounier, M. Pichette, and V. River, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE 7300, 730010 (2009).
[Crossref]

2005 (1)

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

Ahmed, S.

A. Ibrahim, A. Gilerson, J. Chowdhary, and S. Ahmed, “Retrieval of macro- and micro-physical properties of oceanic hydrosols from polarimetric observations,” Remote Sens. Environ. 186, 548–566 (2016).
[Crossref]

Åkerlind, C.

C. Åkerlind, T. Hallberg, J. Eriksson, H. Kariis, and D. Bergström, “Optical polarization-background and camouflage,” Proc. SPIE 10432, 1043204 (2017).
[Crossref]

Alouini, M.

Aubreton, O.

C. Stolz, A. Z. Lechiche, and O. Aubreton, “Short review of polarimetric imaging based method for 3D measurements,” Proc. SPIE 9896, 98960P (2016).
[Crossref]

Bergström, D.

J. Eriksson, D. Bergström, and I. Renhorn, “Characterization and performance of a LWIR polarimetric imager,” Proc. SPIE 10434, 1043407 (2017).
[Crossref]

C. Åkerlind, T. Hallberg, J. Eriksson, H. Kariis, and D. Bergström, “Optical polarization-background and camouflage,” Proc. SPIE 10432, 1043204 (2017).
[Crossref]

Bernier, A.-P.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Breton, M.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

D. A. Lavigne, M. Breton, G. Frounier, M. Pichette, and V. River, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE 7300, 730010 (2009).
[Crossref]

Charette, J.-F.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Chen, Z.

Chenault, D. B.

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

Cheng, Y.

Chowdhary, J.

A. Ibrahim, A. Gilerson, J. Chowdhary, and S. Ahmed, “Retrieval of macro- and micro-physical properties of oceanic hydrosols from polarimetric observations,” Remote Sens. Environ. 186, 548–566 (2016).
[Crossref]

Deby, S.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Eriksson, J.

C. Åkerlind, T. Hallberg, J. Eriksson, H. Kariis, and D. Bergström, “Optical polarization-background and camouflage,” Proc. SPIE 10432, 1043204 (2017).
[Crossref]

J. Eriksson, D. Bergström, and I. Renhorn, “Characterization and performance of a LWIR polarimetric imager,” Proc. SPIE 10434, 1043407 (2017).
[Crossref]

Fade, J.

Femandez, H.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Fournier, G.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Frein, L.

Frounier, G.

D. A. Lavigne, M. Breton, G. Frounier, M. Pichette, and V. River, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE 7300, 730010 (2009).
[Crossref]

Genestie, C.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Gilerson, A.

A. Ibrahim, A. Gilerson, J. Chowdhary, and S. Ahmed, “Retrieval of macro- and micro-physical properties of oceanic hydrosols from polarimetric observations,” Remote Sens. Environ. 186, 548–566 (2016).
[Crossref]

Gui, L.

Gurton, K. P.

Hallberg, T.

C. Åkerlind, T. Hallberg, J. Eriksson, H. Kariis, and D. Bergström, “Optical polarization-background and camouflage,” Proc. SPIE 10432, 1043204 (2017).
[Crossref]

Hu, F.

Hu, H.

H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
[Crossref]

Huang, B.

H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
[Crossref]

Hyde, M. W.

M. A. Sawyer and M. W. Hyde, “Material characterization using passive multispectral polarimetric imagery,” Proc. SPIE 8873, 88730Y (2013).
[Crossref]

Ibrahim, A.

A. Ibrahim, A. Gilerson, J. Chowdhary, and S. Ahmed, “Retrieval of macro- and micro-physical properties of oceanic hydrosols from polarimetric observations,” Remote Sens. Environ. 186, 548–566 (2016).
[Crossref]

Ju, H.

Kariis, H.

C. Åkerlind, T. Hallberg, J. Eriksson, H. Kariis, and D. Bergström, “Optical polarization-background and camouflage,” Proc. SPIE 10432, 1043204 (2017).
[Crossref]

Lavigne, D. A.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

D. A. Lavigne, M. Breton, G. Frounier, M. Pichette, and V. River, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE 7300, 730010 (2009).
[Crossref]

Lechiche, A. Z.

C. Stolz, A. Z. Lechiche, and O. Aubreton, “Short review of polarimetric imaging based method for 3D measurements,” Proc. SPIE 9896, 98960P (2016).
[Crossref]

Li, J.

Li, X.

H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
[Crossref]

Liang, J.

Liang, R.

Liao, R.

Liu, T.

H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
[Crossref]

Liu, W.

Loas, G.

Lu, Y. M.

Z. Sadeghipoor, Y. M. Lu, and S. Süsstrunk, “Gradient-based correction of chromatic aberration in the joint acquisition of color and near-infrared images,” Proc. SPIE 9404, 94040F (2015).
[Crossref]

Meder, C. H.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Moreau, F.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Nazac, A.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Parnet, F.

Peng, X.

Pezzaniti, J. L.

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

Pichette, M.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

D. A. Lavigne, M. Breton, G. Frounier, M. Pichette, and V. River, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE 7300, 730010 (2009).
[Crossref]

Pierangelo, A.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Qin, H.

Qu, E.

Quijano, N. O.

Rehbinder, J.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Ren, L.

Renhorn, I.

J. Eriksson, D. Bergström, and I. Renhorn, “Characterization and performance of a LWIR polarimetric imager,” Proc. SPIE 10434, 1043407 (2017).
[Crossref]

River, V.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

D. A. Lavigne, M. Breton, G. Frounier, M. Pichette, and V. River, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE 7300, 730010 (2009).
[Crossref]

Roussel, S.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Sadeghipoor, Z.

Z. Sadeghipoor, Y. M. Lu, and S. Süsstrunk, “Gradient-based correction of chromatic aberration in the joint acquisition of color and near-infrared images,” Proc. SPIE 9404, 94040F (2015).
[Crossref]

Sawyer, M. A.

M. A. Sawyer and M. W. Hyde, “Material characterization using passive multispectral polarimetric imagery,” Proc. SPIE 8873, 88730Y (2013).
[Crossref]

Shi, J.

Soufan, R.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Stolz, C.

C. Stolz, A. Z. Lechiche, and O. Aubreton, “Short review of polarimetric imaging based method for 3D measurements,” Proc. SPIE 9896, 98960P (2016).
[Crossref]

Su, J.

Sun, S.

Sun, X.

Süsstrunk, S.

Z. Sadeghipoor, Y. M. Lu, and S. Süsstrunk, “Gradient-based correction of chromatic aberration in the joint acquisition of color and near-infrared images,” Proc. SPIE 9404, 94040F (2015).
[Crossref]

Tan, H.

Videen, G.

Vizet, J.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Wang, H.

H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
[Crossref]

Wang, X.

Wu, L.

Wu, Z.

Yan, X.

Yang, Y.

Yuffa, A. J.

Zeng, G.

Zeng, Q.

Zhang, W.

Zhang, X.

Zhao, L.

H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
[Crossref]

Zhou, H.

Zhu, Y.

Zong, J.

Appl. Opt. (6)

IEEE Photon. J. (1)

H. Hu, L. Zhao, B. Huang, X. Li, H. Wang, and T. Liu, “Enhancing visibility of polarimetric underwater image by transmittance correction,” IEEE Photon. J. 9, 6802310 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (8)

C. Åkerlind, T. Hallberg, J. Eriksson, H. Kariis, and D. Bergström, “Optical polarization-background and camouflage,” Proc. SPIE 10432, 1043204 (2017).
[Crossref]

C. Stolz, A. Z. Lechiche, and O. Aubreton, “Short review of polarimetric imaging based method for 3D measurements,” Proc. SPIE 9896, 98960P (2016).
[Crossref]

Z. Sadeghipoor, Y. M. Lu, and S. Süsstrunk, “Gradient-based correction of chromatic aberration in the joint acquisition of color and near-infrared images,” Proc. SPIE 9404, 94040F (2015).
[Crossref]

J. Eriksson, D. Bergström, and I. Renhorn, “Characterization and performance of a LWIR polarimetric imager,” Proc. SPIE 10434, 1043407 (2017).
[Crossref]

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

M. A. Sawyer and M. W. Hyde, “Material characterization using passive multispectral polarimetric imagery,” Proc. SPIE 8873, 88730Y (2013).
[Crossref]

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. River, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

D. A. Lavigne, M. Breton, G. Frounier, M. Pichette, and V. River, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE 7300, 730010 (2009).
[Crossref]

Remote Sens. Environ. (1)

A. Ibrahim, A. Gilerson, J. Chowdhary, and S. Ahmed, “Retrieval of macro- and micro-physical properties of oceanic hydrosols from polarimetric observations,” Remote Sens. Environ. 186, 548–566 (2016).
[Crossref]

Sci. Rep. (1)

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. H. Meder, H. Femandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep. 7, 2471 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) High-resolution visible image of a one-yuan coin, (b) the low-resolution SWIR image; (c) the downsampled low-resolution visible image.
Fig. 2.
Fig. 2. Reconstructed high-resolution SWIR image by directly using the intensity information from the visible image.
Fig. 3.
Fig. 3. (a) Schematic diagram of continuous condition and (b) the specific situation in the x direction.
Fig. 4.
Fig. 4. Reconstructed high-resolution SWIR image.
Fig. 5.
Fig. 5. SWIR polarized images. (a)–(d) are the original low-resolution polarized images with polarized angles of 0°, 45°, 90°, and 135°, respectively. (e)–(h) are the reconstructed high-resolution polarized images with polarized angles of 0°, 45°, 90° and 135°, respectively.
Fig. 6.
Fig. 6. Polarized information of one-yuan coin. (a) DoP of low-resolution SWIR image, (b) DoP of reconstructed high-resolution SWIR image, (c) DoP of visible image, (d) AoP of low-resolution SWIR image, (e) AoP of reconstructed high-resolution SWIR image, and (f) AoP of visible image.
Fig. 7.
Fig. 7. (a) Image captured by the visible camera and (b) image captured by the SWIR camera.
Fig. 8.
Fig. 8. Reconstructed high-resolution SWIR image.
Fig. 9.
Fig. 9. Polarized information of the SWIR image. (a) DoP of low-resolution SWIR image, (b) DoP of reconstructed high-resolution SWIR image, (c) DoP of low-resolution visible image, (d) DoP of high-resolution visible image, (e) AoP of low-resolution SWIR image, and (f) AoP of reconstructed high-resolution SWIR image.
Fig. 10.
Fig. 10. Fused images from the visible and SWIR images. (a) is from the original SWIR image and the reconstructed low-resolution visible image, and (b) is from the original visible image and the reconstructed high-resolution SWIR image.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

β = d S · f V d V · f S ,
I S H = I S L I V H / I V L ,
C V = I V H I V L .
r = C V ( x 0 , y 0 ) C V ( x 0 1 , y 0 ) = I V H ( x 0 , y 0 ) / I V L ( x 0 , y 0 ) I V H ( x 0 1 , y 0 ) / I V L ( x 0 1 , y 0 ) = η V H η V L ,
η V H = I V H ( x 0 , y 0 ) I V H ( x 0 1 , y 0 ) ,
η V L = I V L ( x 0 , y 0 ) I V L ( x 0 1 , y 0 ) .
r = η V H η S L ,
η S L = I S L ( x 0 , y 0 ) I S L ( x 0 1 , y 0 ) .
f ( r ) = r ,
( r ) σ = r ,
σ = log r r .
I R ( x 0 , y 0 ) = I ( x 0 , y 0 ) σ ,
I R ( x 0 1 , y 0 ) = I ( x 0 1 , y 0 ) 1 / σ ,
S 0 = I ( 0 ) + I ( 90 ) , S 1 = I ( 0 ) I ( 90 ) , S 2 = I ( 45 ) I ( 135 ) ,
DoP = S 1 2 + S 2 2 S 0 ,
AoP = 1 2 · arctan S 2 S 1 .

Metrics