Abstract

In this work, we designed a fast cholesteric shutter by switching the director between homeotropic and transient planar states. It is polarization independent, has sub-millisecond response time, high transmission in homeotropic state, and is highly reflective in the transient planar state. We also developed a driving waveform to achieve a long dark state of the device. The device has potential to be applied in the optics and display industries, for applications that could include augmented reality, head-up displays, transparent OLED displays, and smart windows.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dye-doped dual-frequency nematic cells as fast-switching polarization-independent shutters

Bing-Xiang Li, Rui-Lin Xiao, Sathyanarayana Paladugu, Sergij V. Shiyanovskii, and Oleg D. Lavrentovich
Opt. Express 27(4) 3861-3866 (2019)

Light shutter using dichroic-dye-doped long-pitch cholesteric liquid crystals

Byeong-Hun Yu, Jae-Won Huh, Ki-Han Kim, and Tae-Hoon Yoon
Opt. Express 21(24) 29332-29337 (2013)

Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal

Chun-Wei Chen, Alyssa N. Brigeman, Tsung-Jui Ho, and Iam Choon Khoo
Opt. Mater. Express 8(3) 691-697 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D.-K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2014).
  2. D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102–3104 (1992).
    [Crossref]
  3. M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70, 720–722 (1997).
    [Crossref]
  4. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19, 9744–9749 (2011).
    [Crossref]
  5. K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20, 24376–24381 (2012).
    [Crossref]
  6. L. De Sio, N. Tabiryan, and T. J. Bunning, “POLICRYPS-based electrically switchable Bragg reflector,” Opt. Express 23, 32696–32702 (2015).
    [Crossref]
  7. R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88, 051121 (2006).
    [Crossref]
  8. J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, “P-87: optical characterization of reflective holographic polymer dispersed liquid crystals,” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2002), Vol. 33.
  9. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Improvement of electro-optical properties of HPDLC gratings by in situ shearing during holographic recording,” Mol. Cryst. Liq. Cryst. 488, 202–209 (2008).
    [Crossref]
  10. T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, “11.1: switchable reflective displays formed from holographic polymer-dispersed liquid crystals (H-PDLCs),” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2000), Vol. 31.
  11. P. Watson, J. E. Anderson, V. Sergan, and P. J. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst. 26, 1307–1314 (1999).
    [Crossref]
  12. P. Watson, J. E. Anderson, and P. J. Bos, “Twist-energy-driven Helfrich modulations in cholesteric liquid crystals illustrated in the transient-planar to planar transition,” Phys. Rev. E 62, 3719–3723 (2000).
    [Crossref]
  13. J. E. Anderson, P. Watson, and P. J. Bos, “Study of relaxations in cholesteric liquid crystals after reduction of an electric field,” Liq. Cryst. 28, 945–968 (2001).
    [Crossref]
  14. P. E. Watson, “The Homeotropic to Planar Transition in Cholesteric Liquid Crystals,” Ph.D. dissertation (Kent State University, 2000).

2015 (1)

2012 (1)

2011 (1)

2008 (1)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Improvement of electro-optical properties of HPDLC gratings by in situ shearing during holographic recording,” Mol. Cryst. Liq. Cryst. 488, 202–209 (2008).
[Crossref]

2006 (1)

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88, 051121 (2006).
[Crossref]

2001 (1)

J. E. Anderson, P. Watson, and P. J. Bos, “Study of relaxations in cholesteric liquid crystals after reduction of an electric field,” Liq. Cryst. 28, 945–968 (2001).
[Crossref]

2000 (1)

P. Watson, J. E. Anderson, and P. J. Bos, “Twist-energy-driven Helfrich modulations in cholesteric liquid crystals illustrated in the transient-planar to planar transition,” Phys. Rev. E 62, 3719–3723 (2000).
[Crossref]

1999 (1)

P. Watson, J. E. Anderson, V. Sergan, and P. J. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst. 26, 1307–1314 (1999).
[Crossref]

1997 (1)

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70, 720–722 (1997).
[Crossref]

1992 (1)

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102–3104 (1992).
[Crossref]

Anderson, J. E.

J. E. Anderson, P. Watson, and P. J. Bos, “Study of relaxations in cholesteric liquid crystals after reduction of an electric field,” Liq. Cryst. 28, 945–968 (2001).
[Crossref]

P. Watson, J. E. Anderson, and P. J. Bos, “Twist-energy-driven Helfrich modulations in cholesteric liquid crystals illustrated in the transient-planar to planar transition,” Phys. Rev. E 62, 3719–3723 (2000).
[Crossref]

P. Watson, J. E. Anderson, V. Sergan, and P. J. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst. 26, 1307–1314 (1999).
[Crossref]

Bos, P. J.

J. E. Anderson, P. Watson, and P. J. Bos, “Study of relaxations in cholesteric liquid crystals after reduction of an electric field,” Liq. Cryst. 28, 945–968 (2001).
[Crossref]

P. Watson, J. E. Anderson, and P. J. Bos, “Twist-energy-driven Helfrich modulations in cholesteric liquid crystals illustrated in the transient-planar to planar transition,” Phys. Rev. E 62, 3719–3723 (2000).
[Crossref]

P. Watson, J. E. Anderson, V. Sergan, and P. J. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst. 26, 1307–1314 (1999).
[Crossref]

Bunning, T. J.

L. De Sio, N. Tabiryan, and T. J. Bunning, “POLICRYPS-based electrically switchable Bragg reflector,” Opt. Express 23, 32696–32702 (2015).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Improvement of electro-optical properties of HPDLC gratings by in situ shearing during holographic recording,” Mol. Cryst. Liq. Cryst. 488, 202–209 (2008).
[Crossref]

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, “11.1: switchable reflective displays formed from holographic polymer-dispersed liquid crystals (H-PDLCs),” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2000), Vol. 31.

Chien, L.-C.

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102–3104 (1992).
[Crossref]

Choi, S.-W.

Crawford, G. P.

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, “P-87: optical characterization of reflective holographic polymer dispersed liquid crystals,” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2002), Vol. 33.

De Sarkar, M.

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, “P-87: optical characterization of reflective holographic polymer dispersed liquid crystals,” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2002), Vol. 33.

De Sio, L.

Doane, J. W.

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102–3104 (1992).
[Crossref]

Hsiao, Y.-C.

Kim, K.-H.

Lee, W.

Li, L.

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, “P-87: optical characterization of reflective holographic polymer dispersed liquid crystals,” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2002), Vol. 33.

Lloyd, P. F.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Improvement of electro-optical properties of HPDLC gratings by in situ shearing during holographic recording,” Mol. Cryst. Liq. Cryst. 488, 202–209 (2008).
[Crossref]

Natarajan, L. V.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Improvement of electro-optical properties of HPDLC gratings by in situ shearing during holographic recording,” Mol. Cryst. Liq. Cryst. 488, 202–209 (2008).
[Crossref]

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, “11.1: switchable reflective displays formed from holographic polymer-dispersed liquid crystals (H-PDLCs),” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2000), Vol. 31.

Oh, S.-W.

Qi, J.

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, “P-87: optical characterization of reflective holographic polymer dispersed liquid crystals,” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2002), Vol. 33.

Ramsey, R. A.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88, 051121 (2006).
[Crossref]

Sergan, V.

P. Watson, J. E. Anderson, V. Sergan, and P. J. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst. 26, 1307–1314 (1999).
[Crossref]

Sharma, S. C.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88, 051121 (2006).
[Crossref]

Sutherland, R. L.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Improvement of electro-optical properties of HPDLC gratings by in situ shearing during holographic recording,” Mol. Cryst. Liq. Cryst. 488, 202–209 (2008).
[Crossref]

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, “11.1: switchable reflective displays formed from holographic polymer-dispersed liquid crystals (H-PDLCs),” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2000), Vol. 31.

Tabiryan, N.

Tang, C.-Y.

Tondiglia, V. P.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Improvement of electro-optical properties of HPDLC gratings by in situ shearing during holographic recording,” Mol. Cryst. Liq. Cryst. 488, 202–209 (2008).
[Crossref]

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, “11.1: switchable reflective displays formed from holographic polymer-dispersed liquid crystals (H-PDLCs),” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2000), Vol. 31.

Vaghela, K.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88, 051121 (2006).
[Crossref]

Watson, P.

J. E. Anderson, P. Watson, and P. J. Bos, “Study of relaxations in cholesteric liquid crystals after reduction of an electric field,” Liq. Cryst. 28, 945–968 (2001).
[Crossref]

P. Watson, J. E. Anderson, and P. J. Bos, “Twist-energy-driven Helfrich modulations in cholesteric liquid crystals illustrated in the transient-planar to planar transition,” Phys. Rev. E 62, 3719–3723 (2000).
[Crossref]

P. Watson, J. E. Anderson, V. Sergan, and P. J. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst. 26, 1307–1314 (1999).
[Crossref]

Watson, P. E.

P. E. Watson, “The Homeotropic to Planar Transition in Cholesteric Liquid Crystals,” Ph.D. dissertation (Kent State University, 2000).

Xu, M.

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70, 720–722 (1997).
[Crossref]

Yang, D.-K.

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70, 720–722 (1997).
[Crossref]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102–3104 (1992).
[Crossref]

D.-K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2014).

Yoon, T.-H.

Yu, B.-H.

Appl. Phys. Lett. (3)

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102–3104 (1992).
[Crossref]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70, 720–722 (1997).
[Crossref]

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88, 051121 (2006).
[Crossref]

Liq. Cryst. (2)

P. Watson, J. E. Anderson, V. Sergan, and P. J. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst. 26, 1307–1314 (1999).
[Crossref]

J. E. Anderson, P. Watson, and P. J. Bos, “Study of relaxations in cholesteric liquid crystals after reduction of an electric field,” Liq. Cryst. 28, 945–968 (2001).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Improvement of electro-optical properties of HPDLC gratings by in situ shearing during holographic recording,” Mol. Cryst. Liq. Cryst. 488, 202–209 (2008).
[Crossref]

Opt. Express (3)

Phys. Rev. E (1)

P. Watson, J. E. Anderson, and P. J. Bos, “Twist-energy-driven Helfrich modulations in cholesteric liquid crystals illustrated in the transient-planar to planar transition,” Phys. Rev. E 62, 3719–3723 (2000).
[Crossref]

Other (4)

P. E. Watson, “The Homeotropic to Planar Transition in Cholesteric Liquid Crystals,” Ph.D. dissertation (Kent State University, 2000).

D.-K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2014).

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, “11.1: switchable reflective displays formed from holographic polymer-dispersed liquid crystals (H-PDLCs),” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2000), Vol. 31.

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, “P-87: optical characterization of reflective holographic polymer dispersed liquid crystals,” in SID Symposium Digest of Technical Papers (Blackwell Publishing, 2002), Vol. 33.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Relaxation of cholesteric liquid crystal. (b) Reflection spectrum of cholesteric material from homeotropic state to planar state.
Fig. 2.
Fig. 2. Two-cell stack (a) top view and (b) side view.
Fig. 3.
Fig. 3. (a) Capacitance measurement circuit and (b) the capacitance-time curve.
Fig. 4.
Fig. 4. (a) Optics measurement sketch, (b) cell stack structure, and (c) photo of the setup.
Fig. 5.
Fig. 5. (a) 1-ms-on, 1-ms-off driving form and (b) shutter transmission versus time.
Fig. 6.
Fig. 6. (a) 1 ms on with 0.4, 0.5, 0.6, 0.8, and 1 ms off driving form and (b) shutter transmission versus time.
Fig. 7.
Fig. 7. (a) Before transient planar state, (b) perfect transient planar state, (c) after transient planar state, (d) applying voltage to turn director from state (a) back to homeotropic state, (e) applying voltage to turn director from state (b) back to homeotropic state, (f) applying voltage to turn director from state (c) back to homeotropic state. (g)–(l) Magnifications of director configurations in black frames of (a)–(f), and (m)–(r) magnifications of director configurations in green frames of (a)–(f).
Fig. 8.
Fig. 8. (a) 1 ms off with 0.4, 0.5, 0.6, 0.8, and 1 ms on driving form and (b) shutter transmission versus time.
Fig. 9.
Fig. 9. (a) 1 ms on, 0.5, 0.6 ms off driving waveform, (b) shutter transmission versus time in 625 nm, (c) shutter transmission versus time in 525 nm, and (d) shutter transmission versus time in 475 nm.
Fig. 10.
Fig. 10. Transmission versus time of LED light in phase and out of phase, and real pictures of LED light.
Fig. 11.
Fig. 11. (a) Transmission of a minimized two-cell stack versus time, and (b) method to achieve a long off state with a six-cell stack (three units).

Tables (1)

Tables Icon

Table 1. Device Transmission and Response Times

Metrics