Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-performance optical sensing based on electromagnetically induced transparency-like effect in Tamm plasmon multilayer structures

Not Accessible

Your library or personal account may give you access

Abstract

We present a novel kind of optical sensor based on the electromagnetically induced transparency (EIT)-like effect in a Tamm plasmon multilayer structure, which consists of a metal film on a dielectric Bragg grating with alternatively stacked TiO2 and SiO2 layers and a defect layer. The defect layer can induce a refractive-index-sensitive ultranarrow peak in the broad Tamm plasmon reflection dip. This nonintuitive phenomenon in analogy to the EIT effect in atomic systems originates from the coupling and destructive interference between the defect and Tamm plasmon modes in the multilayer structure. Taking advantage of this EIT-like effect, we achieve an ultrahigh sensing performance with a sensitivity of 416 nm/RIU and a figure of merit (FOM) of 682RIU1. The numerical simulations agree well with the theoretical calculations. Additionally, the spectral line shape can be effectively tailored by changing the defect layer thickness, significantly promoting the dimensionless FOM from 0.76×104 to more than 2.4×104. Our findings will facilitate the achievement of ultrasensitive optical sensors in multilayer structures and open up perspectives for practical applications, especially in gas, biochemical, and optofluidic sensing.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Induced reflection in Tamm plasmon systems

Hua Lu, Yangwu Li, Han Jiao, Zhiwen Li, Dong Mao, and Jianlin Zhao
Opt. Express 27(4) 5383-5392 (2019)

Terahertz refractive index sensor based on Tamm plasmon-polaritons with graphene

M. Mehdi Keshavarz and Abbas Alighanbari
Appl. Opt. 58(13) 3604-3612 (2019)

High-sensitivity multi-channel refractive-index sensor based on a graphene-based hybrid Tamm plasmonic structure

Jinlei Hu, Yulan Huang, Yuxuan Chen, Zheng-da Hu, Jingjing Wu, and Jicheng Wang
Opt. Mater. Express 11(11) 3833-3843 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.