Abstract

This paper utilized digital holographic microscopy and optical tweezers to study microdeformation of red blood cells (RBCs) dynamically under oxidative stress. RBCs attached with microbeads were stretched by dual optical tweezers to generate microdeformation. Morphology of RBCs under manipulation were recorded dynamically and recovered by off-axis digital holographic microscopy method. RBCs treated with H2O2 at different concentrations were measured to investigate the mechanical properties under oxidative stress. Use of optical tweezers and off-axis digital holographic microscopy enhanced measuring accuracy compared with the traditional method. Microdeformation of RBCs is also more consistent with the physiological situation. This proposal is meaningful for clinical applications and basic analysis of Parkinson’s disease research.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers

Huadong Song, Ying Liu, Bin Zhang, Kangzhen Tian, Panpan Zhu, Hao Lu, and Qi Tang
Biomed. Opt. Express 8(1) 384-394 (2017)

Two-photon microscopy imaging of oxidative stress in human living erythrocytes

Gohar Tsakanova, Elina Arakelova, Violetta Ayvazyan, Anna Ayvazyan, Stepan Tatikyan, Rouben Aroutiounian, Yeva Dalyan, Samvel Haroutiunian, Vasili Tsakanov, and Arsen Arakelyan
Biomed. Opt. Express 8(12) 5834-5846 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription