Abstract

For state-of-the-art optical elements in laser fusion applications, optical surfaces, especially those with residual fabrication error, are generally complex in symmetry, shape of aperture, and spatial frequency distribution. It is critical to represent the optical surface with high accuracy, efficiency, and flexibility during the stages of design, fabrication, and testing. For this purpose, in this paper, we propose that adaptive radial basis functions (ARBF) can be applied to represent the complex optical surface. As more degrees of freedom are harnessed by an adaptive algorithm, the proposed approach presents better accuracy and needs fewer basis functions than that of the classical radial basis functions. Both surfaces, with global and local variation, can be well represented by the proposed method. Furthermore, the fitting ability of ARBF is verified with the measured data from an element polished by magnetorheological finishing technology. Optimization frameworks of the shape parameters for practical use are also discussed. For good measure, spatial relevance between surface height and nodes location shows that ARBF is fairly flexible in representing complex optical surfaces.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Model of radial basis functions based on surface slope for optical freeform surfaces

Kainian Tong, Yi Zheng, Zan Zhang, Xing Zhao, Bo Zhang, Lipei Song, Lingjie Wang, Chao Wang, and Pengfei Wu
Opt. Express 26(11) 14010-14023 (2018)

Adaptive, optical, radial basis function neural network for handwritten digit recognition

Wesley E. Foor and Mark A. Neifeld
Appl. Opt. 34(32) 7545-7555 (1995)

Description and tolerance analysis of freeform surface figure error using specific-probability-distributed Gaussian radial basis functions

Junhao Ni, Tong Yang, Yue Liu, Dewen Cheng, and Yongtian Wang
Opt. Express 27(22) 31820-31839 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription