Abstract

The denoising of electronic speckle pattern interferometry (ESPI) fringe patterns is a key step in the application of ESPI. In this paper, we propose a method for batch denoising of ESPI fringe patterns based on a convolution neural network (CNN). In the proposed method, the network is first trained by our training dataset, which consists of the noisy ESPI fringe patterns and the corresponding noise-free images. We propose a new computer-simulated method of ESPI fringe patterns to create our training dataset. After training, the other multi-frame ESPI fringe patterns to be processed are fed to the trained network simultaneously, and the corresponding denoising images can be obtained in batches. We demonstrate the performance of the proposed method via application to 50 computer-simulated ESPI fringe patterns and three groups of experimentally obtained ESPI fringe patterns. The experimental results show that our method can obtain desired results even when the quality of ESPI fringe images is considerably low because of variable density, high noise, and low contrast, and our method can denoise multi-frame fringe patterns simultaneously. Moreover, we use the computer-simulated ESPI fringe patterns to train the network; after training, the trained network can be used to denoise either computer-simulated ESPI fringe patterns or the experimentally obtained ESPI fringe patterns. The proposed method is especially suitable for processing a large number of ESPI fringe patterns.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image decomposition model Shearlet–Hilbert–L2 with better performance for denoising in ESPI fringe patterns

Wenjun Xu, Chen Tang, Yonggang Su, Biyuan Li, and Zhenkun Lei
Appl. Opt. 57(4) 861-871 (2018)

Two parabolic–hyperbolic oriented partial differential equations for denoising in electronic speckle pattern interferometry fringes

Wenjun Xu, Chen Tang, Junjiang Zhang, Yonggang Su, and Ray Kai Leung Su
Appl. Opt. 54(15) 4720-4726 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription