Abstract

This study investigates the stability to tilts (misalignments) of Fourier-based multipass amplifiers, i.e., amplifiers where a Fourier transform is used to transport the beam from pass to pass. Here, the stability properties of these amplifiers to misalignments (tilts) of their optical components have been investigated. For this purpose, a method to quantify the sensitivity to tilts based on the amplifier small-signal gain has been elaborated and compared with measurements. To improve tilt stability by more than an order of magnitude, a simple auto-alignment system has been proposed and tested. This study, combined with other investigations devoted to the stability of the output beam to variations in aperture and thermal lens effects of the active medium, qualifies the Fourier-based amplifier for the high-energy and high-power sectors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thin-disk laser scaling limit due to thermal lens induced misalignment instability

Karsten Schuhmann, Klaus Kirch, Francois Nez, Randolf Pohl, and Aldo Antognini
Appl. Opt. 55(32) 9022-9032 (2016)

Multipass amplifiers with self-compensation of the thermal lens

Karsten Schuhmann, Klaus Kirch, Miroslaw Marszalek, Francois Nez, Randolf Pohl, Ivo Schulthess, Laura Sinkunaite, Gunther Wichmann, Manuel Zeyen, and Aldo Antognini
Appl. Opt. 57(35) 10323-10333 (2018)

Multielement stable resonators containing a variable lens

Vittorio Magni
J. Opt. Soc. Am. A 4(10) 1962-1969 (1987)

References

  • View by:
  • |
  • |
  • |

  1. V. Chvykov, H. Cao, R. Nagymihaly, M. P. Kalashnikov, N. Khodakovskiy, R. Glassock, L. Ehrentraut, M. Schnuerer, and K. Osvay, “High peak and average power Ti:sapphire thin disk amplifier with extraction during pumping,” Opt. Lett. 41, 3017–3020 (2016).
    [Crossref]
  2. S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
    [Crossref]
  3. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4  kW (4.7  mJ, 1030  nm) average power converted to 820  W at 515  nm and 234  W at 343  nm,” Opt. Express 23, 21064–21077 (2015).
    [Crossref]
  4. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, “23.7  W picosecond cryogenic Yb:YAG multipass amplifier,” Opt. Express 15, 3955–3961 (2007).
    [Crossref]
  5. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4, 1562–1569 (1965).
    [Crossref]
  6. A. Siegman, Lasers (University Science Books, 1986).
  7. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [Crossref]
  8. W. W. Simmons, D. R. Speck, and J. T. Hunt, “Argus laser system: performance summary,” Appl. Opt. 17, 999–1005 (1978).
    [Crossref]
  9. K. Schuhmann, K. Kirch, M. Marszalek, F. Nez, R. Pohl, I. Schulthess, L. Sinkunaite, G. Wichmann, M. Zeyen, and A. Antognini, “Multipass amplifiers with self-compensation of the thermal lens,” Appl. Opt. 57, 10323–10333 (2018).
    [Crossref]
  10. A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
    [Crossref]
  11. K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
    [Crossref]
  12. K. Schuhmann, K. Kirch, F. Nez, R. Pohl, and A. Antognini, “Thin-disk laser scaling limit due to thermal lens induced misalignment instability,” Appl. Opt. 55, 9022–9032 (2016).
    [Crossref]
  13. K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
    [Crossref]
  14. K. Schuhmann, “The thin-disk laser for the 2S—2P measurement in muonic helium,” Ph.D. thesis (Institute for Particle Physics and Astrophysics, 2017).
  15. Y. H. Peng, J. Cheng, Y. Y. Cheah, K. S. Lai, E. Lau, and S. K. Ang, “High brightness continuous wave ceramic yb:luag thin-disk laser,” Opt. Express 23, 19618–19623 (2015).
    [Crossref]
  16. J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1  kw average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445(2013).
    [Crossref]
  17. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
    [Crossref]
  18. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [Crossref]
  19. A. Giesen, “Thin disk lasers—power scalability and beam quality,” Laser Technik J. 2, 42–45 (2005).
    [Crossref]
  20. A. Giesen, “High-power thin-disk lasers,” in Advanced Solid-State Photonics (2007), p. MA1.
  21. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
    [Crossref]
  22. K. Schuhmann, T. W. Hänsch, K. Kirch, A. Knecht, F. Kottmann, F. Nez, R. Pohl, D. Taqqu, and A. Antognini, “Thin-disk laser pump schemes for large number of passes and moderate pump source quality,” Appl. Opt. 54, 9400–9408 (2015).
    [Crossref]
  23. T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. A. Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42, 3263–3266(2017).
    [Crossref]
  24. T. Müller-Wirts, “Aligna automated laser beam alignment and stabilization system,” 2018, http://www.tem-messtechnik.de/EN/aligna.htm .

2018 (1)

2017 (2)

T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. A. Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42, 3263–3266(2017).
[Crossref]

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

2016 (2)

2015 (4)

2013 (2)

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1  kw average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445(2013).
[Crossref]

2009 (1)

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

2007 (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[Crossref]

S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, “23.7  W picosecond cryogenic Yb:YAG multipass amplifier,” Opt. Express 15, 3955–3961 (2007).
[Crossref]

2005 (1)

A. Giesen, “Thin disk lasers—power scalability and beam quality,” Laser Technik J. 2, 42–45 (2005).
[Crossref]

1995 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

1986 (1)

1978 (1)

1965 (1)

Ahmed, M.

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

Ahmed, M. A.

Amaro, F. D.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Ang, S. K.

Antognini, A.

K. Schuhmann, K. Kirch, M. Marszalek, F. Nez, R. Pohl, I. Schulthess, L. Sinkunaite, G. Wichmann, M. Zeyen, and A. Antognini, “Multipass amplifiers with self-compensation of the thermal lens,” Appl. Opt. 57, 10323–10333 (2018).
[Crossref]

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

K. Schuhmann, K. Kirch, F. Nez, R. Pohl, and A. Antognini, “Thin-disk laser scaling limit due to thermal lens induced misalignment instability,” Appl. Opt. 55, 9022–9032 (2016).
[Crossref]

K. Schuhmann, T. W. Hänsch, K. Kirch, A. Knecht, F. Kottmann, F. Nez, R. Pohl, D. Taqqu, and A. Antognini, “Thin-disk laser pump schemes for large number of passes and moderate pump source quality,” Appl. Opt. 54, 9400–9408 (2015).
[Crossref]

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Bauer, D.

Bigot, E. L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Biraben, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Bödefeld, R.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Brauch, U.

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Cao, H.

Cheah, Y. Y.

Cheng, J.

Chvykov, V.

Dax, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Dietrich, T.

Ehrentraut, L.

Fujita, M.

Giesen, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[Crossref]

A. Giesen, “Thin disk lasers—power scalability and beam quality,” Laser Technik J. 2, 42–45 (2005).
[Crossref]

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

A. Giesen, “High-power thin-disk lasers,” in Advanced Solid-State Photonics (2007), p. MA1.

Glassock, R.

Graf, T.

T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. A. Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42, 3263–3266(2017).
[Crossref]

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4  kW (4.7  mJ, 1030  nm) average power converted to 820  W at 515  nm and 234  W at 343  nm,” Opt. Express 23, 21064–21077 (2015).
[Crossref]

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1  kw average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445(2013).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Hansch, T.

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

Hansch, T. W.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Hänsch, T. W.

Hein, J.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Hellwing, M.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Hornung, M.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Hunt, J. T.

Indelicato, P.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Izawa, Y.

Julien, L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Kalashnikov, M. P.

Kaluza, M. C.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Kao, C. Y.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Karszewski, M.

Kawanaka, J.

Kawashima, T.

Keppler, S.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Kessler, A.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Khodakovskiy, N.

Killi, A.

Kirch, K.

Knecht, A.

Knowles, P. E.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Kogelnik, H.

Kottmann, F.

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

K. Schuhmann, T. W. Hänsch, K. Kirch, A. Knecht, F. Kottmann, F. Nez, R. Pohl, D. Taqqu, and A. Antognini, “Thin-disk laser pump schemes for large number of passes and moderate pump source quality,” Appl. Opt. 54, 9400–9408 (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Lai, K. S.

Lau, E.

Liu, Y. W.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Loescher, A.

Ludhova, L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Magni, V.

Marszalek, M.

Moschuring, N.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Mulhauser, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Nagymihaly, R.

Nebel, T.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Negel, J.-P.

Nez, F.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Osvay, K.

Peng, Y. H.

Piehler, S.

Pohl, R.

K. Schuhmann, K. Kirch, M. Marszalek, F. Nez, R. Pohl, I. Schulthess, L. Sinkunaite, G. Wichmann, M. Zeyen, and A. Antognini, “Multipass amplifiers with self-compensation of the thermal lens,” Appl. Opt. 57, 10323–10333 (2018).
[Crossref]

K. Schuhmann, K. Kirch, F. Nez, R. Pohl, and A. Antognini, “Thin-disk laser scaling limit due to thermal lens induced misalignment instability,” Appl. Opt. 55, 9022–9032 (2016).
[Crossref]

K. Schuhmann, T. W. Hänsch, K. Kirch, A. Knecht, F. Kottmann, F. Nez, R. Pohl, D. Taqqu, and A. Antognini, “Thin-disk laser pump schemes for large number of passes and moderate pump source quality,” Appl. Opt. 54, 9400–9408 (2015).
[Crossref]

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Rabinowitz, P.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Röcker, C.

Rumpel, M.

Sävert, A.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Schnuerer, M.

Schorcht, F.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Schuhmann, K.

K. Schuhmann, K. Kirch, M. Marszalek, F. Nez, R. Pohl, I. Schulthess, L. Sinkunaite, G. Wichmann, M. Zeyen, and A. Antognini, “Multipass amplifiers with self-compensation of the thermal lens,” Appl. Opt. 57, 10323–10333 (2018).
[Crossref]

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

K. Schuhmann, K. Kirch, F. Nez, R. Pohl, and A. Antognini, “Thin-disk laser scaling limit due to thermal lens induced misalignment instability,” Appl. Opt. 55, 9022–9032 (2016).
[Crossref]

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

K. Schuhmann, T. W. Hänsch, K. Kirch, A. Knecht, F. Kottmann, F. Nez, R. Pohl, D. Taqqu, and A. Antognini, “Thin-disk laser pump schemes for large number of passes and moderate pump source quality,” Appl. Opt. 54, 9400–9408 (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

K. Schuhmann, “The thin-disk laser for the 2S—2P measurement in muonic helium,” Ph.D. thesis (Institute for Particle Physics and Astrophysics, 2017).

Schulthess, I.

Schwob, C.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Siegman, A.

A. Siegman, Lasers (University Science Books, 1986).

Simmons, W. W.

Sinkunaite, L.

Speck, D. R.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[Crossref]

Stewen, C.

Sutter, D.

Taqqu, D.

K. Schuhmann, T. W. Hänsch, K. Kirch, A. Knecht, F. Kottmann, F. Nez, R. Pohl, D. Taqqu, and A. Antognini, “Thin-disk laser pump schemes for large number of passes and moderate pump source quality,” Appl. Opt. 54, 9400–9408 (2015).
[Crossref]

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Tokita, S.

Voss, A.

Wandt, C.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Weichelt, B.

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

Wichmann, G.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Zeyen, M.

Appl. Opt. (6)

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[Crossref]

Laser Technik J. (1)

A. Giesen, “Thin disk lasers—power scalability and beam quality,” Laser Technik J. 2, 42–45 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (3)

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

K. Schuhmann, M. Ahmed, A. Antognini, T. Graf, T. Hansch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

Other (4)

K. Schuhmann, “The thin-disk laser for the 2S—2P measurement in muonic helium,” Ph.D. thesis (Institute for Particle Physics and Astrophysics, 2017).

A. Siegman, Lasers (University Science Books, 1986).

A. Giesen, “High-power thin-disk lasers,” in Advanced Solid-State Photonics (2007), p. MA1.

T. Müller-Wirts, “Aligna automated laser beam alignment and stabilization system,” 2018, http://www.tem-messtechnik.de/EN/aligna.htm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Scheme showing the effect of a soft aperture on beam propagation. The aperture whose transmission function is depicted by the blue area decreases the beam excursion from x in at the input plane to x out at the output plane because it selects only part of the beam. Moreover, a non-vanishing excursion of the beam at the impact plane ( x in 0 ) results in a change of the output beam angle θ out . Geometrical considerations can be used to deduce that θ out θ in = ( x out x in ) / R . In this scheme, it is assumed that the input beam is moving parallel to the optical axis, i.e., θ in = 0 . Yet, the aperture does not affect the position of the beam focus. The darker and lighter shaded red areas indicate the ± w and the ± 2 w size of the beam.
Fig. 2.
Fig. 2. (Top) Scheme of the realized Fourier-based amplifier with the corresponding beam path. The beam routing in the multipass amplifier is sustained by an array of flat mirrors. (Bottom) Front view on the mirror array and its working principle. Mirrors #1 to #16 are numbered according to the sequence in which the beam passes them. The beam enters the amplifier over array mirror #1 and is reflected by the disk to #2, and from there, over M1 (M1a-M1b-M1a) to #3, over the disk to #4, over M2 to #5, and so forth until the disk is passed eight times. The crosses indicate the position of M1, M2, and disk “projected” on the mirror array. They act as point reflectors in the mirror array plane for propagation from mirror to mirror. Hereby, we denote as mirror M1 the two-mirror system given in green composed of the convex mirror M1a and the “end-mirror” M1b.
Fig. 3.
Fig. 3. (Right) Photo of the custom-designed mirror array with L-shaped adjustable mirror holders. The horizontal spacing between the 25 mm mirrors is 31 mm. (Left) Picture of the pair of 45° mirrors acting as a vertical retro-reflector, which can assume the functionality of the mirror M2 in Fig. 2.
Fig. 4.
Fig. 4. Excursion of the Gaussian beam axis w.r.t. the optical axis along propagation in the Fourier-based amplifier in Fig. 2 computed using the ABCD-matrix formalism applied to ray optics and including aperture effects. The blue curve represents the beam excursion for a disk tilt of ϕ = 50 μrad . The red curve represents the beam excursion for an input beam with an angle of 100 μrad, w.r.t. a perfect alignment. As a comparison, the beam size evolution ± w along propagation axis z is shown by the gray curves. An aperture width of W = 10 mm has been used in these plots. The vertical lines represent the positions of the disk (with a focusing dioptric power) and the positions of the defocusing mirror M1a, respectively. These plots apply for both the horizontal ( x ) and the vertical ( y ) directions.
Fig. 5.
Fig. 5. Similar to Fig. 4, but for a multipass amplifier where M2 is replaced by a pair of 45° mirrors acting as a vertical retro-reflector. The vertical dotted lines indicate the position of the retro-reflector. The excursion is shown only for the vertical component. The horizontal component is not affected by the vertical retro-reflector, so that it follows the evolution shown in Fig. 4.
Fig. 6.
Fig. 6. Measured beam profiles for various disk tilts for three multipass configurations based on Fig. 2. The colors represent beam intensity. Each picture is normalized to its intensity maximum. These images show how beam excursions and distortions increase with misalignment. Note that the first row represents the reference point, as it shows the beam position for the aligned amplifier. The first column is the excursion at the second pass, the second column at the eighth pass, and the third column also at the eighth pass but for an amplifier where M2 is replaced by a pair of 45° mirrors acting as a vertical retro-reflector. The ϕ = 126 μrad tilt causes such a large beam excursion already at the second pass that the beam is deviated outside the aperture of the beam profiler used to record the images. At the eighth pass, the beam excursion as shown in Fig. 4 is much smaller, so the beam enters the profiler. Yet, this beam is fully distorted because of hard aperture effects occurring at the fourth pass where the excursion is maximal. When the retro-reflector is introduced, the excursion at the fourth pass vanishes, so that the beam distortions at the eighth pass disappear. This results in a beam at the eighth pass with an almost Gaussian profile and a small excursion from the unperturbed position given in the first row.
Fig. 7.
Fig. 7. Red curve represents the tilt-dependent part of G 8 pass M 2 single ( e 1.07 · 10 7 ϕ 2 ) for the eight-pass amplifier in Fig. 2 as a function of the disk tilt ϕ . It corresponds to the tilt-dependent transmission through the multipass amplifier normalized to 1 for vanishing tilts. Similarly, the blue curve is the tilt-dependent part of G 8 pass M 2 45 ° pair ( e 2.98 · 10 7 ϕ 2 ) for the same amplifier but M2 replaced by a retro-reflector.
Fig. 8.
Fig. 8. Small signal gain versus disk tilt in vertical direction. The red points were measured for the multipass amplifier in Fig. 2 with a simple M2 mirror. The blue points have been obtained from the same amplifier but with M2 replaced by a vertical retro-reflector. The measurements have been fitted with parabolic functions (solid lines). The dashed curves represent the predictions from Eqs. (16) and (17) normalized to match the maxima of the parabolic fits.
Fig. 9.
Fig. 9. Schematic of the realized multipass amplifier equipped with a simple auto-alignment system. Only two loops (each with a vertical and a horizontal degree of freedom) are sufficient to mitigate the excursion of the laser beam from the optical axis for tilts of the disk, M1a, M1b, M2, and input beam. Each loop (C1 and C2) comprises a quadrant detector (Q1 and Q2) whose error signals act on the motorized mirrors M in and M2, respectively. Ideally, the quadrants measure the position of the beam at the first and second passes on the M2 mirror.
Fig. 10.
Fig. 10. Similar to Fig. 4 but for a multipass amplifier equipped with the simple auto-alignment system depicted in Fig. 9. Because of the efficient compensation produced by active stabilization, the disk tilt has been increased to ϕ = 1.25 mrad , (a factor 25 times larger than in Fig. 4). The correction generated by C1 (steering of M in ) is compensating the downstream tilts occurring in the first and second passes on the disk, so that the beam excursion of the first pass on M2 is nullified. Similarly, the second loop C2 adjusts the tilt of the mirror M2 so that the beam excursions at all successive passes (third, forth etc.) on M2 are nullified.
Fig. 11.
Fig. 11. Measured small-signal gain for three eight-pass amplifiers versus the disk tilt ϕ . The red points have been taken for the simple amplifier in Fig. 2, the blue points for the same amplifier but with M2 replaced by a vertical retro-reflector, and the green ones for the amplifier in Fig. 9 equipped with the active stabilization system. Polynomial fits have been drawn to guide the eye. For the amplifier with the active stabilization system, mirror M2 has been replaced with a mirror with slightly higher transmission to generate a robust error signal from Q1 and Q2. This reduces the overall gain of the amplifier but does not alter its tilt dependence.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

AM 4 f AM 4 f AM 4 f ,
AM Fourier AM SP AM Fourier AM SP AM Fourier AM SP AM ,
τ ( x , y ) = e x 2 + y 2 W 2 ,
1 / w out 2 = 1 / w in 2 + 1 / W 2 ,
x out = x in W 2 w in 2 + W 2 ,
θ out = θ in x in w in 2 w in 2 + W 2 1 R ,
R out = R in R .
1 q = 1 R i λ π w 2 ,
M aperture q = [ 1 0 i λ π W 2 1 ] .
q out = A q in + B C q in + D = q in i λ π W 2 q in + 1 ,
M aperture geometry = [ W 2 w in 2 + W 2 0 w in 2 w in 2 + W 2 1 R 1 ] .
[ x out θ out ] = [ W 2 w in 2 + W 2 0 w in 2 w in 2 + W 2 1 R 1 ] [ x in θ in ] .
T aperture aligned = W 2 w in 2 + W 2 .
T aperture mis - aligned = e 2 x in 2 + y in 2 w in 2 + W 2 W 2 w in 2 + W 2 .
T tot = n = 1 N T aperture mis - aligned [ n ] ,
M AM M 1 AM [ 0 B 1 / B 0 ] ,
M AM M 2 AM [ 1 L 0 1 ] ,
AM Fourier AM SP AM Fourier AM SP AM Fourier AM SP AM .
G 8 pass M 2 single ( G 0 ) 8 ( W 2 w in 2 + W 2 ) 8 e 1.07 · 10 8 ϕ 2
G 8 pass M 2 45 ° pair ( G 0 ) 8 ( W 2 w in 2 + W 2 ) 8 e 2.98 · 10 7 ϕ 2

Metrics