Abstract

N2-N2 and N2-O2 S-branch Raman linewidths have been determined using picosecond dual-broadband pure rotational coherent anti-Stokes Raman scattering (CARS). Time-resolved rotational CARS measurements were performed in gas-phase N2 and air for temperatures up to 1900 K in order to determine the time constants of the coherence decay to subsequently calculate the S-branch Raman linewidths. Coherence decay time traces and the resulting S-branch Raman linewidths are presented for N2-N2 and N2-O2 collisions. Therewith, we reduce the gap of widely missing S-branch linewidth data in the temperature regime of many combustion processes. Further, we demonstrate that the standard monoexponential fitting of the coherence decay, as it is commonly done for nitrogen, is not applicable to oxygen.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct measurements of collisional Raman line broadening in the S-branch transitions of CO perturbed by CO, N2, and CO2

Paul S. Hsu, Hans U. Stauffer, Naibo Jiang, James R. Gord, and Sukesh Roy
Appl. Opt. 58(10) C1-C6 (2019)

Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2

Hans U. Stauffer, Waruna D. Kulatilaka, Paul S. Hsu, James R. Gord, and Sukesh Roy
Appl. Opt. 50(4) A38-A48 (2011)

Raman linewidth measurements using time-resolved hybrid picosecond/nanosecond rotational CARS

Emil Nordström, Ali Hosseinnia, Christian Brackmann, Joakim Bood, and Per-Erik Bengtsson
Opt. Lett. 40(24) 5718-5721 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription