Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Research on an adaptive filter for the Mie lidar signal

Not Accessible

Your library or personal account may give you access

Abstract

The statistical properties of the noise in the Mie lidar signal are analyzed by the statistical hypotheses testing method. Based on this, an adaptive filter is proposed to eliminate the noise. The least mean square error algorithm is used to achieve optimal filtering, in which the mean square error is minimized by adjusting the filter’s weight matrix. The validity of the adaptive filter is verified by numerical simulation and experimental data retrieving. In the numerical simulation, the signal-to-noise ratio of the adaptive filter is larger than that of the wavelet transform filter, and the mean square error of the output of the adaptive filter is less than the wavelet transform filter. In experimental data retrieving, the filtered lidar signals of the adaptive filter and wavelet transform filter are used to retrieve the extinction coefficient respectively in different weather conditions. The amplitude of the ripples in the extinction coefficient profile of the adaptive filter is less than that of the wavelet transform filter. Additionally, the adaptive filter’s extinction coefficient profile is smoother than that of the wavelet transform filter. The detail of the extinction coefficient is displayed more clearly in the profile of the adaptive filter. The research result is of great importance for improving the accuracy of lidar data retrieving.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
De-noising and retrieving algorithm of Mie lidar data based on the particle filter and the Fernald method

Chen Li, Zengxin Pan, Feiyue Mao, Wei Gong, Shihua Chen, and Qilong Min
Opt. Express 23(20) 26509-26520 (2015)

Statistical-uncertainty-based adaptive filtering of lidar signals

P. L. Fuehrer, C. A. Friehe, T. S. Hristov, D. I. Cooper, and W. E. Eichinger
Appl. Opt. 39(5) 850-859 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved