Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Green’s function for a sharpened and metal-coated dielectric probe

Abstract

In apertureless scanning-probe optical microscopy and in the case of more traditional scanned optical probes coated with a metal that is thin near the probe tip (in lieu of an aperture), samples are probed via interaction between the probe and surface. In the nanometer-scale region between the tip and the sample, the field can be approximated by quasi-electrostatic analytics. Hence, the coated probe can be modeled as in the present case as a hyperboloid of revolution without the need for hyperboloidal wave functions in the near zone. The solutions to Laplace’s equation and in general Green’s function with the application of the boundary conditions, therefore, yield an appropriate approximation and allow a completely analytical solution for the resonance effects upon the probe tip to be obtained. The large field enhancements due to the sharpness of the tip and to surface plasmon fields may thus be analytically examined.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical field characteristics of nanofocusing by conical metal-coated dielectric probe

Kazuo Tanaka, Kiyofumi Katayama, and Masahiro Tanaka
Opt. Express 19(21) 21028-21037 (2011)

Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip

R. Bachelot, P. Gleyzes, and A. C. Boccara
Appl. Opt. 36(10) 2160-2170 (1997)

Nanofocusing of radially polarized light with dielectric-metal-dielectric probe

Tomasz J. Antosiewicz, Piotr Wróbel, and Tomasz Szoplik
Opt. Express 17(11) 9191-9196 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.