Abstract

We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures

Aaron V. Diebold, Mohammadreza F. Imani, Timothy Sleasman, and David R. Smith
Optica 5(12) 1529-1541 (2018)

Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements

Aaron V. Diebold, Laura Pulido-Mancera, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, and David R. Smith
J. Opt. Soc. Am. B 34(12) 2610-2623 (2017)

Synthetic aperture radar with dynamic metasurface antennas: a conceptual development

Michael Boyarsky, Timothy Sleasman, Laura Pulido-Mancera, Thomas Fromenteze, Andreas Pedross-Engel, Claire M. Watts, Mohammadreza F. Imani, Matthew S. Reynolds, and David R. Smith
J. Opt. Soc. Am. A 34(5) A22-A36 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians, Madrid, Spain (2006), vol. 3, pp. 1433–1452.
  2. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [Crossref]
  3. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  4. Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2012).
  5. R. Fergus, A. Torralba, and W. T. Freeman, Random Lens Imaging (2006).
  6. A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
    [Crossref]
  7. M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3, 384–397 (2017).
  8. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
    [Crossref]
  9. A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Spatio-temporal imaging of light transport in highly scattering media under white light illumination,” Optica 3, 1160–1166 (2016).
    [Crossref]
  10. L.-H. Yeh, L. Tian, and L. Waller, “Structured illumination microscopy with unknown patterns and a statistical prior,” Biomed. Opt. Express 8, 695–711 (2017).
    [Crossref]
  11. A. El-Halawany, A. Beckus, H. E. Kondakci, M. Monroe, N. Mohammadian, G. K. Atia, and A. F. Abouraddy, “Incoherent lensless imaging via coherency back-propagation,” Opt. Lett. 42, 3089–3092 (2017).
    [Crossref]
  12. M. I. Akhlaghi and A. Dogariu, “Compressive correlation imaging with random illumination,” Opt. Lett. 40, 4464–4467 (2015).
    [Crossref]
  13. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” Opt. Express 24, 16835–16855(2016).
  14. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
    [Crossref]
  15. W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22, 22146–22156 (2014).
    [Crossref]
  16. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” Optica 5, 1–9 (2018).
    [Crossref]
  17. T. Wu, J. Dong, X. Shao, and S. Gigan, “Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity,” Opt. Express 25, 27182–27194 (2017).
    [Crossref]
  18. T. W. Murray, M. Haltmeier, T. Berer, E. Leiss-Holzinger, and P. Burgholzer, “Super-resolution photoacoustic microscopy using blind structured illumination,” Optica 4, 17–22 (2017).
    [Crossref]
  19. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
    [Crossref]
  20. S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
    [Crossref]
  21. G. Montaldo, D. Palacio, M. Tanter, and M. Fink, “Building three-dimensional images using a time-reversal chaotic cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1489–1497 (2005).
    [Crossref]
  22. A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102, 084301 (2009).
    [Crossref]
  23. Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
    [Crossref]
  24. C. Zhang, S. Guo, J. Guan, J. Cao, and F. Gao, “Three-dimensional ghost imaging using acoustic transducer,” Opt. Commun. 368, 134–140 (2016).
    [Crossref]
  25. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
    [Crossref]
  26. S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
    [Crossref]
  27. J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
    [Crossref]
  28. S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
    [Crossref]
  29. A. Shayei, Z. Kavehvash, and M. Shabany, “Improved-resolution millimeter-wave imaging through structured illumination,” Appl. Opt. 56, 4454–4465 (2017).
    [Crossref]
  30. M. Liang, Y. Li, H. Meng, M. A. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
    [Crossref]
  31. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
    [Crossref]
  32. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
    [Crossref]
  33. T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
    [Crossref]
  34. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
    [Crossref]
  35. T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
    [Crossref]
  36. L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
    [Crossref]
  37. A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
    [Crossref]
  38. T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
    [Crossref]
  39. M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
    [Crossref]
  40. T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
    [Crossref]
  41. T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
    [Crossref]
  42. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
    [Crossref]
  43. E. Wolf, “Determination of the amplitude and the phase of scattered fields by holography,” J. Opt. Soc. Am. 60, 18–20 (1970).
    [Crossref]
  44. G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
    [Crossref]
  45. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref]
  46. T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
    [Crossref]
  47. O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2808–2811 (2017).
    [Crossref]
  48. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [Crossref]
  49. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [Crossref]
  50. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [Crossref]
  51. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
    [Crossref]
  52. R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
    [Crossref]
  53. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
    [Crossref]
  54. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  55. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
    [Crossref]
  56. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
    [Crossref]
  57. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  58. D. Li, X. Li, Y. Qin, Y. Cheng, and H. Wang, “Radar coincidence imaging: an instantaneous imaging technique with stochastic signals,” IEEE Trans. Geosci. Remote Sens. 52, 2261–2277 (2014).
    [Crossref]
  59. D. Li, X. Li, Y. Cheng, Y.-L. Qin, and H. Wang, “Three dimensional radar coincidence imaging,” Prog. Electromagn. Res. M 33, 223–238 (2013).
    [Crossref]
  60. X. Wang and Z. Lin, “Microwave surveillance based on ghost imaging and distributed antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1831–1834 (2016).
    [Crossref]
  61. S. Zhu, A. Zhang, Z. Xu, and X. Dong, “Radar coincidence imaging with random microwave source,” IEEE Antennas Wireless Propag. Lett. 14, 1239–1242 (2015).
    [Crossref]
  62. N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
    [Crossref]
  63. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
    [Crossref]
  64. W. Gong and S. Han, “The influence of axial correlation depth of light field on lensless ghost imaging,” J. Opt. Soc. Am. B 27, 675–678 (2010).
    [Crossref]
  65. J. W. Goodman, Statistical Optics (Wiley, 2015).
  66. A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Anntenas Propag. 34, 30–45 (1986).
    [Crossref]
  67. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  68. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
    [Crossref]
  69. J. Laviada and F. Las-Heras, “Scalar calibration for broadband synthetic aperture radar operating with amplitude-only data,” IEEE Antennas Wireless Propag. Lett. 14, 1714–1717 (2015).
    [Crossref]
  70. J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
    [Crossref]
  71. F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
    [Crossref]
  72. J. W. Goodman, Statistical Properties of Laser Speckle Patterns (Springer, 1975), pp. 9–75.
  73. J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008).
    [Crossref]
  74. M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
    [Crossref]
  75. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
    [Crossref]
  76. L. J. Porcello, N. G. Massey, R. B. Innes, and J. M. Marks, “Speckle reduction in synthetic-aperture radars,” J. Opt. Soc. Am. 66, 1305–1311 (1976).
    [Crossref]
  77. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [Crossref]
  78. M. A. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003).
    [Crossref]
  79. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
    [Crossref]
  80. R. Betancur and R. Castañeda, “Spatial coherence modulation,” J. Opt. Soc. Am. A 26, 147–155 (2009).
    [Crossref]
  81. Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
    [Crossref]
  82. M. I. Akhlaghi and A. Dogariu, “Stochastic optical sensing,” Optica 3, 58–63 (2016).
    [Crossref]
  83. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  84. M. I. Akhlaghi and A. Dogariu, “Tracking hidden objects using stochastic probing,” Optica 4, 447–453 (2017).
    [Crossref]
  85. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
    [Crossref]
  86. T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C–4.

2018 (1)

2017 (14)

T. Wu, J. Dong, X. Shao, and S. Gigan, “Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity,” Opt. Express 25, 27182–27194 (2017).
[Crossref]

T. W. Murray, M. Haltmeier, T. Berer, E. Leiss-Holzinger, and P. Burgholzer, “Super-resolution photoacoustic microscopy using blind structured illumination,” Optica 4, 17–22 (2017).
[Crossref]

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3, 384–397 (2017).

L.-H. Yeh, L. Tian, and L. Waller, “Structured illumination microscopy with unknown patterns and a statistical prior,” Biomed. Opt. Express 8, 695–711 (2017).
[Crossref]

A. El-Halawany, A. Beckus, H. E. Kondakci, M. Monroe, N. Mohammadian, G. K. Atia, and A. F. Abouraddy, “Incoherent lensless imaging via coherency back-propagation,” Opt. Lett. 42, 3089–3092 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

A. Shayei, Z. Kavehvash, and M. Shabany, “Improved-resolution millimeter-wave imaging through structured illumination,” Appl. Opt. 56, 4454–4465 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2808–2811 (2017).
[Crossref]

M. I. Akhlaghi and A. Dogariu, “Tracking hidden objects using stochastic probing,” Optica 4, 447–453 (2017).
[Crossref]

2016 (13)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

M. I. Akhlaghi and A. Dogariu, “Stochastic optical sensing,” Optica 3, 58–63 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

X. Wang and Z. Lin, “Microwave surveillance based on ghost imaging and distributed antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1831–1834 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

C. Zhang, S. Guo, J. Guan, J. Cao, and F. Gao, “Three-dimensional ghost imaging using acoustic transducer,” Opt. Commun. 368, 134–140 (2016).
[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” Opt. Express 24, 16835–16855(2016).

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Spatio-temporal imaging of light transport in highly scattering media under white light illumination,” Optica 3, 1160–1166 (2016).
[Crossref]

S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
[Crossref]

2015 (9)

M. I. Akhlaghi and A. Dogariu, “Compressive correlation imaging with random illumination,” Opt. Lett. 40, 4464–4467 (2015).
[Crossref]

Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

M. Liang, Y. Li, H. Meng, M. A. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

S. Zhu, A. Zhang, Z. Xu, and X. Dong, “Radar coincidence imaging with random microwave source,” IEEE Antennas Wireless Propag. Lett. 14, 1239–1242 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

J. Laviada and F. Las-Heras, “Scalar calibration for broadband synthetic aperture radar operating with amplitude-only data,” IEEE Antennas Wireless Propag. Lett. 14, 1714–1717 (2015).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

2014 (7)

D. Li, X. Li, Y. Qin, Y. Cheng, and H. Wang, “Radar coincidence imaging: an instantaneous imaging technique with stochastic signals,” IEEE Trans. Geosci. Remote Sens. 52, 2261–2277 (2014).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22, 22146–22156 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

2013 (4)

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

D. Li, X. Li, Y. Cheng, Y.-L. Qin, and H. Wang, “Three dimensional radar coincidence imaging,” Prog. Electromagn. Res. M 33, 223–238 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

2012 (5)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
[Crossref]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

2011 (1)

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
[Crossref]

2010 (1)

2009 (4)

R. Betancur and R. Castañeda, “Spatial coherence modulation,” J. Opt. Soc. Am. A 26, 147–155 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102, 084301 (2009).
[Crossref]

2008 (4)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008).
[Crossref]

2007 (1)

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

2006 (2)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

2005 (4)

G. Montaldo, D. Palacio, M. Tanter, and M. Fink, “Building three-dimensional images using a time-reversal chaotic cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1489–1497 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

2000 (1)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref]

1986 (1)

A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Anntenas Propag. 34, 30–45 (1986).
[Crossref]

1982 (1)

1976 (1)

1970 (1)

Abouraddy, A. F.

Ahmed, S. S.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
[Crossref]

Akhlaghi, M. I.

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Alvarez-Lopez, Y.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

Andresen, E. R.

Antipa, N.

Arboleya-Arboleya, A.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

Arnitz, D.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Asif, M. S.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3, 384–397 (2017).

Atia, G. K.

Aubry, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Spatio-temporal imaging of light transport in highly scattering media under white light illumination,” Optica 3, 1160–1166 (2016).
[Crossref]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102, 084301 (2009).
[Crossref]

Ayremlou, A.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3, 384–397 (2017).

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
[Crossref]

Badon, A.

Baraniuk, R.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3, 384–397 (2017).

Barbier, M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Beckus, A.

Belkebir, K.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Berer, T.

Bernet, S.

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Betancur, R.

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Boccara, A. C.

Bostan, E.

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Boyarsky, M.

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C–4.

Brady, D.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Brady, D. J.

Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
[Crossref]

Bromberg, Y.

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Burgholzer, P.

Candès, E. J.

E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians, Madrid, Spain (2006), vol. 3, pp. 1433–1452.

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Cao, H.

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

Cao, J.

C. Zhang, S. Guo, J. Guan, J. Cao, and F. Gao, “Three-dimensional ghost imaging using acoustic transducer,” Opt. Commun. 368, 134–140 (2016).
[Crossref]

Carron, I.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Carsenat, D.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Castañeda, R.

Chardon, G.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Chen, M.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Chen, X.

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

Chen, X.-H.

Cheng, J.

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008).
[Crossref]

Cheng, Y.

D. Li, X. Li, Y. Qin, Y. Cheng, and H. Wang, “Radar coincidence imaging: an instantaneous imaging technique with stochastic signals,” IEEE Trans. Geosci. Remote Sens. 52, 2261–2277 (2014).
[Crossref]

D. Li, X. Li, Y. Cheng, Y.-L. Qin, and H. Wang, “Three dimensional radar coincidence imaging,” Prog. Electromagn. Res. M 33, 223–238 (2013).
[Crossref]

Cummer, S. A.

Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Daudet, L.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Deacon, K. S.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

Decroze, C.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Derode, A.

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102, 084301 (2009).
[Crossref]

Diebold, A. V.

Dogariu, A.

Dong, G.

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

Dong, J.

Dong, X.

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

S. Zhu, A. Zhang, Z. Xu, and X. Dong, “Radar coincidence imaging with random microwave source,” IEEE Antennas Wireless Propag. Lett. 14, 1239–1242 (2015).
[Crossref]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

Driscoll, T.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Dudley, J. M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Eldar, Y. C.

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2012).

El-Halawany, A.

Fergus, R.

R. Fergus, A. Torralba, and W. T. Freeman, Random Lens Imaging (2006).

Ferri, F.

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Fiedler, H.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Fienup, J. R.

Fink, M.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Spatio-temporal imaging of light transport in highly scattering media under white light illumination,” Optica 3, 1160–1166 (2016).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

G. Montaldo, D. Palacio, M. Tanter, and M. Fink, “Building three-dimensional images using a time-reversal chaotic cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1489–1497 (2005).
[Crossref]

Fleischer, J. W.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

Freeman, W. T.

R. Fergus, A. Torralba, and W. T. Freeman, Random Lens Imaging (2006).

Friberg, A. T.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Fromenteze, T.

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2808–2811 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Gao, F.

C. Zhang, S. Guo, J. Guan, J. Cao, and F. Gao, “Three-dimensional ghost imaging using acoustic transducer,” Opt. Commun. 368, 134–140 (2016).
[Crossref]

Garcia-Gonzalez, C.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
[Crossref]

Genty, G.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Gigan, S.

T. Wu, J. Dong, X. Shao, and S. Gigan, “Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity,” Opt. Express 25, 27182–27194 (2017).
[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” Opt. Express 24, 16835–16855(2016).

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Girard, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Gollub, J.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C–4.

Gollub, J. N.

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2808–2811 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

Gong, W.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

W. Gong and S. Han, “The influence of axial correlation depth of light field on lensless ghost imaging,” J. Opt. Soc. Am. B 27, 675–678 (2010).
[Crossref]

Goodman, J. W.

J. W. Goodman, Statistical Properties of Laser Speckle Patterns (Springer, 1975), pp. 9–75.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

J. W. Goodman, Statistical Optics (Wiley, 2015).

Gowda, V. R.

Guan, J.

C. Zhang, S. Guo, J. Guan, J. Cao, and F. Gao, “Three-dimensional ghost imaging using acoustic transducer,” Opt. Commun. 368, 134–140 (2016).
[Crossref]

Gumbmann, F.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
[Crossref]

Guo, S.

C. Zhang, S. Guo, J. Guan, J. Cao, and F. Gao, “Three-dimensional ghost imaging using acoustic transducer,” Opt. Commun. 368, 134–140 (2016).
[Crossref]

Hajnsek, I.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Haltmeier, M.

Han, S.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

W. Gong and S. Han, “The influence of axial correlation depth of light field on lensless ghost imaging,” J. Opt. Soc. Am. B 27, 675–678 (2010).
[Crossref]

Hardy, N. D.

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
[Crossref]

Harm, W.

He, Y.

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

Heckel, R.

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Hillenbrand, R.

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref]

Hunt, J.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Imani, M.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Imani, M. F.

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C–4.

Innes, R. B.

Jesacher, A.

Katz, O.

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” Opt. Express 24, 16835–16855(2016).

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Kavehvash, Z.

Keilmann, F.

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref]

Kondakci, H. E.

Konneker, A.

Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Krieger, G.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Kuo, G.

Kutyniok, G.

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2012).

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Las-Heras, F.

J. Laviada and F. Las-Heras, “Scalar calibration for broadband synthetic aperture radar operating with amplitude-only data,” IEEE Antennas Wireless Propag. Lett. 14, 1714–1717 (2015).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

Laviada, J.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

J. Laviada and F. Las-Heras, “Scalar calibration for broadband synthetic aperture radar operating with amplitude-only data,” IEEE Antennas Wireless Propag. Lett. 14, 1714–1717 (2015).
[Crossref]

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Leiss-Holzinger, E.

Lerosey, G.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Spatio-temporal imaging of light transport in highly scattering media under white light illumination,” Optica 3, 1160–1166 (2016).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Li, D.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Spatio-temporal imaging of light transport in highly scattering media under white light illumination,” Optica 3, 1160–1166 (2016).
[Crossref]

D. Li, X. Li, Y. Qin, Y. Cheng, and H. Wang, “Radar coincidence imaging: an instantaneous imaging technique with stochastic signals,” IEEE Trans. Geosci. Remote Sens. 52, 2261–2277 (2014).
[Crossref]

D. Li, X. Li, Y. Cheng, Y.-L. Qin, and H. Wang, “Three dimensional radar coincidence imaging,” Prog. Electromagn. Res. M 33, 223–238 (2013).
[Crossref]

Li, E.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Li, X.

D. Li, X. Li, Y. Qin, Y. Cheng, and H. Wang, “Radar coincidence imaging: an instantaneous imaging technique with stochastic signals,” IEEE Trans. Geosci. Remote Sens. 52, 2261–2277 (2014).
[Crossref]

D. Li, X. Li, Y. Cheng, Y.-L. Qin, and H. Wang, “Three dimensional radar coincidence imaging,” Prog. Electromagn. Res. M 33, 223–238 (2013).
[Crossref]

Li, Y.

M. Liang, Y. Li, H. Meng, M. A. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Liang, M.

M. Liang, Y. Li, H. Meng, M. A. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Lin, Z.

X. Wang and Z. Lin, “Microwave surveillance based on ghost imaging and distributed antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1831–1834 (2016).
[Crossref]

Lipworth, G.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Liu, X.

Liutkus, A.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Lugiato, L.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Marks, D. L.

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2808–2811 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Marks, J. M.

Martina, D.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Massey, N. G.

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Meng, H.

M. Liang, Y. Li, H. Meng, M. A. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Methfessel, S.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
[Crossref]

Meyers, R.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

Mildenhall, B.

Mohammadian, N.

Monroe, M.

Montaldo, G.

G. Montaldo, D. Palacio, M. Tanter, and M. Fink, “Building three-dimensional images using a time-reversal chaotic cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1489–1497 (2005).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Moreira, A.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Mrozack, A.

Mudry, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Murray, T. W.

Neifeld, M. A.

M. Liang, Y. Li, H. Meng, M. A. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

M. A. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003).
[Crossref]

Ng, R.

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Odabasi, H.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

Oron, D.

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Paganin, D. M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Palacio, D.

G. Montaldo, D. Palacio, M. Tanter, and M. Fink, “Building three-dimensional images using a time-reversal chaotic cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1489–1497 (2005).
[Crossref]

Pedross-Engel, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

Pelliccia, D.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Popa, B.

Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Popoff, S.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Porat, A.

Porcello, L. J.

Pulido-Mancera, L.

Qin, Y.

D. Li, X. Li, Y. Qin, Y. Cheng, and H. Wang, “Radar coincidence imaging: an instantaneous imaging technique with stochastic signals,” IEEE Trans. Geosci. Remote Sens. 52, 2261–2277 (2014).
[Crossref]

Qin, Y.-L.

D. Li, X. Li, Y. Cheng, Y.-L. Qin, and H. Wang, “Three dimensional radar coincidence imaging,” Prog. Electromagn. Res. M 33, 223–238 (2013).
[Crossref]

Rack, A.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Reynolds, M.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Reynolds, M. S.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

Rigneault, H.

Ritsch-Marte, M.

Roider, C.

Rose, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

Ryczkowski, P.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Sala, V.

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

Sankaranarayanan, A.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3, 384–397 (2017).

Saqueb, S. A. N.

S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
[Crossref]

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Schiessl, A.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
[Crossref]

Schmidt, L.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
[Crossref]

Sentenac, A.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Sertel, K.

S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
[Crossref]

Shabany, M.

Shankar, P.

Shao, X.

Shapiro, J. H.

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Shayei, A.

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Shih, Y.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Situ, G.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

Sleasman, T.

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Sleasman, T. A.

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C–4.

Smith, D.

Smith, D. R.

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2808–2811 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C–4.

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Tanter, M.

G. Montaldo, D. Palacio, M. Tanter, and M. Fink, “Building three-dimensional images using a time-reversal chaotic cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1489–1497 (2005).
[Crossref]

Tian, L.

Tiebout, M.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
[Crossref]

Torralba, A.

R. Fergus, A. Torralba, and W. T. Freeman, Random Lens Imaging (2006).

Trofatter, K.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Trofatter, P.

Tsai, T.

Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Veeraraghavan, A.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3, 384–397 (2017).

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Waller, L.

Wang, H.

D. Li, X. Li, Y. Qin, Y. Cheng, and H. Wang, “Radar coincidence imaging: an instantaneous imaging technique with stochastic signals,” IEEE Trans. Geosci. Remote Sens. 52, 2261–2277 (2014).
[Crossref]

D. Li, X. Li, Y. Cheng, Y.-L. Qin, and H. Wang, “Three dimensional radar coincidence imaging,” Prog. Electromagn. Res. M 33, 223–238 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Wang, X.

X. Wang and Z. Lin, “Microwave surveillance based on ghost imaging and distributed antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1831–1834 (2016).
[Crossref]

Watts, C. M.

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Werner, M.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Wolf, E.

Wu, L.-A.

Wu, T.

Xie, Y.

Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Xin, H.

M. Liang, Y. Li, H. Meng, M. A. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Xu, W.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Xu, Z.

S. Zhu, A. Zhang, Z. Xu, and X. Dong, “Radar coincidence imaging with random microwave source,” IEEE Antennas Wireless Propag. Lett. 14, 1239–1242 (2015).
[Crossref]

Yaghjian, A.

A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Anntenas Propag. 34, 30–45 (1986).
[Crossref]

Yeh, L.-H.

Younis, M.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Yurduseven, O.

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2808–2811 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

Zhai, Y.-H.

Zhang, A.

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

S. Zhu, A. Zhang, Z. Xu, and X. Dong, “Radar coincidence imaging with random microwave source,” IEEE Antennas Wireless Propag. Lett. 14, 1239–1242 (2015).
[Crossref]

Zhang, C.

C. Zhang, S. Guo, J. Guan, J. Cao, and F. Gao, “Three-dimensional ghost imaging using acoustic transducer,” Opt. Commun. 368, 134–140 (2016).
[Crossref]

Zhang, D.

Zhao, C.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Zhao, M.

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

Zhu, S.

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

S. Zhu, A. Zhang, Z. Xu, and X. Dong, “Radar coincidence imaging with random microwave source,” IEEE Antennas Wireless Propag. Lett. 14, 1239–1242 (2015).
[Crossref]

Zink, M.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Zvolensky, T.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (5)

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106, 194104 (2015).
[Crossref]

Biomed. Opt. Express (1)

IEEE Antennas Wireless Propag. Lett. (6)

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

M. Liang, Y. Li, H. Meng, M. A. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2808–2811 (2017).
[Crossref]

X. Wang and Z. Lin, “Microwave surveillance based on ghost imaging and distributed antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1831–1834 (2016).
[Crossref]

S. Zhu, A. Zhang, Z. Xu, and X. Dong, “Radar coincidence imaging with random microwave source,” IEEE Antennas Wireless Propag. Lett. 14, 1239–1242 (2015).
[Crossref]

J. Laviada and F. Las-Heras, “Scalar calibration for broadband synthetic aperture radar operating with amplitude-only data,” IEEE Antennas Wireless Propag. Lett. 14, 1714–1717 (2015).
[Crossref]

IEEE Microw. Mag. (1)

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13, 26–43 (2012).
[Crossref]

IEEE Microw. Wireless. Compon. Lett. (1)

S. Zhu, X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and A. Zhang, “Frequency-polarization-diverse aperture for coincidence imaging,” IEEE Microw. Wireless. Compon. Lett. 28, 82–84 (2017).
[Crossref]

IEEE Trans. Anntenas Propag. (2)

A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Anntenas Propag. 34, 30–45 (1986).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Anntenas Propag. 65, 6864–6877 (2017).
[Crossref]

IEEE Trans. Antennas Propag. (1)

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

IEEE Trans. Comput. Imag. (1)

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3, 384–397 (2017).

IEEE Trans. Geosci. Remote Sens. (2)

D. Li, X. Li, Y. Qin, Y. Cheng, and H. Wang, “Radar coincidence imaging: an instantaneous imaging technique with stochastic signals,” IEEE Trans. Geosci. Remote Sens. 52, 2261–2277 (2014).
[Crossref]

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

G. Montaldo, D. Palacio, M. Tanter, and M. Fink, “Building three-dimensional images using a time-reversal chaotic cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1489–1497 (2005).
[Crossref]

J. Mod. Opt. (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (5)

Nat. Photonics (5)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Commun. (1)

C. Zhang, S. Guo, J. Guan, J. Cao, and F. Gao, “Three-dimensional ghost imaging using acoustic transducer,” Opt. Commun. 368, 134–140 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica (5)

Phys. Rev. A (5)

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008).
[Crossref]

Phys. Rev. Appl. (1)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

Phys. Rev. Lett. (6)

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102, 084301 (2009).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Y. Xie, T. Tsai, A. Konneker, B. Popa, D. J. Brady, and S. A. Cummer, “Single-sensor multispeaker listening with acoustic metamaterials,” Proc. Natl. Acad. Sci. USA 112, 10595–10598 (2015).
[Crossref]

Prog. Electromagn. Res. M (1)

D. Li, X. Li, Y. Cheng, Y.-L. Qin, and H. Wang, “Three dimensional radar coincidence imaging,” Prog. Electromagn. Res. M 33, 223–238 (2013).
[Crossref]

Sci. Rep. (2)

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Science (2)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Other (8)

J. W. Goodman, Statistical Optics (Wiley, 2015).

J. W. Goodman, Statistical Properties of Laser Speckle Patterns (Springer, 1975), pp. 9–75.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians, Madrid, Spain (2006), vol. 3, pp. 1433–1452.

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2012).

R. Fergus, A. Torralba, and W. T. Freeman, Random Lens Imaging (2006).

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Typical reflective, computational GI configuration used at optical frequencies. (b) Computational microwave GI configuration using the DMA. (c) Structured illumination patterns generated by a DMA.
Fig. 2.
Fig. 2. (a) Autocorrelation and (b) intensity distribution of simulated and experimentally measured DMA fields 80 cm from the aperture, compared with theoretical expectation for a speckle field.
Fig. 3.
Fig. 3. PSNR convergence for different reception methods.
Fig. 4.
Fig. 4. (a) Simulated and (b) experimental point scatterer responses of several reconstruction techniques using fields generated by the DMA. The target is 67 cm from the aperture.
Fig. 5.
Fig. 5. Experimental reconstruction of two targets 55 cm from the aperture.
Fig. 6.
Fig. 6. Reconstruction of two scatterers using intensity versus complex background subtraction.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Em(y)Em(x0,y,0)=1jλzayaEm(0,ya,za)G(x0,yya,za)dyadza,
G(x0,yya,za)=ejk|rra||rra|,
|rra|=x02+(yya)2+za2.
RI(Δy)=I(y)I(y+Δy).
RI(Δy)=I[1+sinc2LΔyλx0],
gm=|yEm(y)σ(y)G(x0,yyr,zr)dy|2,
σest(y)2=(I(y)I(y))(gg),
PSNR=10log10(1Nn=1N[σest(yn)2σideal(yn)2]2),
σest=Hg.

Metrics